Neutrophil Extracellular Traps and Long COVID

Abstract:

Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan.

In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID.

Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can escape clearance and drive NET formation in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.

Source: Shafqat, A., Omer, M., Albalkhi, I., Alabdul Razzak, G., Abdulkader, H., Abdul Rab, S., … & Yaqinuddin, A. Neutrophil Extracellular Traps and Long COVID. Frontiers in Immunology14, 1254310. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1254310/abstract

Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition

Abstract:

The recent pandemic has energized research spotlighting chronic fatigue disorders. The similarities between Long COVID (LC) and Chronic Fatigue Syndrome (CFS), often accompanied by postural orthostatic tachycardia syndrome (POTS) are striking.

Furthermore, the majority afflicted with LC and CFS may be those with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, present in the majority of Americans and characterized by hypomethylation. Elevated homocysteine (Hcy) and depressed B9 and B12 may be links. Speculation about an association between these laboratory analytes and MTHFR abnormalities has been previously reported (Regland et al., 2015).

The absence of a blood-brain barrier (BBB) in CNS circumventricular organs (CVOs) that control autonomic and neuroendocrine functions, problematic in LC, CFS, POTS, and MTHFR, is provocative. Diffusion of CNS Hcy is associated with brain fog, cognitive impairment, and dementia. This provides a distinct link between MTHFR variants and the fog of LC, CFS, and POTS.

Small intestine bacterial overgrowth (SIBO), present in about 17% of Americans, is linked to POTS, mast cell activation syndrome (MCAS), and Ehlers Danlos syndrome (EDS). All exhibit histamine intolerance and female predominance. This may be due to hypomethylation and/or intestinal diamine oxidase (DAO) deficiency.

Metabolism of monoamines and histamine requires methylation. Specific CNS nuclei in CVOs may also provide insight to the POTS paradox. The similar gut microbiomes of LC/CFS (and vitamin D deficiency) may via CVOs trigger an imbalance in glutamate/GABA neurotransmission that translates to neuroendocrine and baroreflex dysfunction. Homozygosity for the MTHFR 677T allele can facilitate hypermethylation via an alternative “rescue” riboflavin pathway triggered by significant Hcy increase.

Hypermethylation predominates in Long Covid. The primary problem in these syndromes is compromised mitochondrial function due to oxidative stress induced by an antioxidant shortfall.

Victims are also frequently deficient in 25(OH)D3 (the storage form of vitamin D), magnesium, and B vitamins, consumed by the persistent chronic inflammatory state. Estrogen increases histamine, norepinephrine, and bradykinin (BKN), which may in part explain the brain fog and its predilection for females.

Source: Patrick W Chambers. Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition. Journal of Orthomolecular Medicine. 38. https://www.researchgate.net/publication/373073968_Long_Covid_POTS_CFS_and_MTHFR_Linked_by_Biochemistry_and_Nutrition#fullTextFileContent (Full text)

Serum ferritin level during hospitalization is associated with Brain Fog after COVID-19

Abstract:

The coronavirus disease 2019 (COVID-19) remains an epidemic worldwide. Most patients suffer residual symptoms, the so-called “Long COVID,” which includes respiratory and neuropsychiatric symptoms. Brain Fog, one of the symptoms of Long COVID, is a major public health issue because it can impair patients’ quality of life even after recovery from the disease. However, neither the pathogenesis nor the treatment of this condition remains unknown.

We focused on serum ferritin levels in this study and collected information on the onset of Brain Fog through questionnaires and found that high ferritin levels during hospitalization were associated with the occurrence of Brain Fog. In addition, we excluded confounders as far as possible using propensity score analyses and found that ferritin was independently associated with Brain Fog in most of the models. We conducted phase analysis and evaluated the interaction of each phase with ferritin levels and Brain Fog.

We found a positive correlation between serum ferritin levels during hospitalization and Brain Fog after COVID-19. High ferritin levels in patients with Brain Fog may reflect the contribution of chronic inflammation in the development of Brain Fog. This study provides a novel insight into the pathogenic mechanism of Brain Fog after COVID-19.

Source: Ishikura T, Nakano T, Kitano T, Tokuda T, Sumi-Akamaru H, Naka T. Serum ferritin level during hospitalization is associated with Brain Fog after COVID-19. Sci Rep. 2023 Aug 11;13(1):13095. doi: 10.1038/s41598-023-40011-0. PMID: 37567939; PMCID: PMC10421912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421912/ (Full text)

The Potential Role of Ocular and Otolaryngological Mucus Proteins in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat.

Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body’s defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection.

Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.

Source: Kaylin Huitsing, Tara Tritsch, Francisco J. Carrera Arias et al. The Potential Role of Ocular and Otolaryngological Mucus Proteins in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome, 24 July 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3171709/v1] https://www.researchsquare.com/article/rs-3171709/v1 (Full text)

 

Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID

Abstract:

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important.

Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types.

Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.

Source: Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, Kaminski CY, Ruunstrom MC, Cooper KR, Truong AD, Dixit AN, Han JE, Ramonell RP, Haddad NS, Rudolph ME, Yalavarthi S, Betin V, Natoli T, Navaz S, Jenks SA, Zuo Y, Knight JS, Khosroshahi A, Lee FE, Sanz I. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023 Jul 14;14(1):4201. doi: 10.1038/s41467-023-40012-7. PMID: 37452024; PMCID: PMC10349085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349085/ (Full text)

Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone
  • Pls have antioxidant properties and are important for curved membrane assemblies
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome
  • Pls replacement is a promising tool against neuroinflammation in these two conditions

Abstract:

After five waves of COVID-19 outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogens contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Chaves AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull. 2023 Jul 7:110702. doi: 10.1016/j.brainresbull.2023.110702. Epub ahead of print. PMID: 37423295. https://www.sciencedirect.com/science/article/pii/S0361923023001272?via%3Dihub (Full text)

Persistent serum protein signatures define an inflammatory subcategory of long COVID

Abstract:

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals.

Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature.

These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.

Source: Talla, A., Vasaikar, S.V., Szeto, G.L. et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun 14, 3417 (2023). https://doi.org/10.1038/s41467-023-38682-4 https://www.nature.com/articles/s41467-023-38682-4 (Full text)

Whole-body cryotherapy as a treatment for chronic medical conditions?

Abstract:

Introduction: Whole-body cryotherapy (WBC) is a controlled exposure of the whole body to cold to gain health benefits. In recent years, data on potential applications of WBC in multiple clinical settings have emerged.

Sources of data: PubMed, EBSCO and Clinical Key search using keywords including terms ‘whole body’, ‘cryotherapy’ and ‘cryostimulation’.

Areas of agreement: WBC could be applied as adjuvant therapy in multiple conditions involving chronic inflammation because of its potent anti-inflammatory effects. Those might include systemic inflammation as in rheumatoid arthritis. In addition, WBC could serve as adjuvant therapy for chronic inflammation in some patients with obesity.

Areas of controversy: WBC probably might be applied as an adjuvant treatment in patients with chronic brain disorders including mild cognitive impairment and general anxiety disorder and in patients with depressive episodes and neuroinflammation reduction as in multiple sclerosis. WBC effects in metabolic disorder treatment are yet to be determined. WBC presumably exerts pleiotropic effects and therefore might serve as adjuvant therapy in multi-systemic disorders, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Growing points: The quality of studies on the effects of WBC in the clinical setting is in general low; hence, randomized controlled trials with adequate sample size and longer follow-up periods are needed.

Areas are timely for developing research: Further studies should examine the mechanism underlying the clinical efficacy of WBC. Multiple conditions might involve chronic inflammation, which in turn could be a potential target of WBC. Further research on the application of WBC in neurodegenerative disorders, neuropsychiatric disorders and ME/CFS should be conducted.

Source: Tabisz H, Modlinska A, Kujawski S, Słomko J, Zalewski P. Whole-body cryotherapy as a treatment for chronic medical conditions? Br Med Bull. 2023 May 12:ldad007. doi: 10.1093/bmb/ldad007. Epub ahead of print. PMID: 37170956. https://pubmed.ncbi.nlm.nih.gov/37170956/

Long COVID: pathophysiological factors and abnormalities of coagulation

Abstract:

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

Source: Simone Turner, Asad Khan, David Putrino, Ashley Woodcock, Douglas B. Kell, and Etheresia Pretorius.  Long COVID: pathophysiological factors and abnormalities of coagulation. Trends in Endocrinology & Metabolism. April 19, 2023. https://www.sciencedirect.com/science/article/pii/S1043276023000553 (Full text)

A review of cytokine-based pathophysiology of Long COVID symptoms

Abstract:

The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production.

In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with “brain fog,” arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines.

There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.

Source: Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne). 2023 Mar 31;10:1011936. doi: 10.3389/fmed.2023.1011936. PMID: 37064029; PMCID: PMC10103649. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103649/ (Full text)