SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition

Abstract:

Background: Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic.

Methods: The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA.

Results: The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgDCD27) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups.

Conclusions: The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.

Source: Limoges MA, Quenum AJI, Chowdhury MMH, Rexhepi F, Namvarpour M, Akbari SA, Rioux-Perreault C, Nandi M, Lucier JF, Lemaire-Paquette S, Premkumar L, Durocher Y, Cantin A, Lévesque S, Dionne IJ, Menendez A, Ilangumaran S, Allard-Chamard H, Piché A, Ramanathan S. SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition. Front Immunol. 2023 Sep 21;14:1223936. doi: 10.3389/fimmu.2023.1223936. PMID: 37809081; PMCID: PMC10551145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551145/ (Full text)

Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity

Abstract:

Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response.

Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison.

During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314).

Source: Altmann DM, Reynolds CJ, Joy G, Otter AD, Gibbons JM, Pade C, Swadling L, Maini MK, Brooks T, Semper A, McKnight Á, Noursadeghi M, Manisty C, Treibel TA, Moon JC; COVIDsortium investigators; Boyton RJ. Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity. Nat Commun. 2023 Aug 23;14(1):5139. doi: 10.1038/s41467-023-40460-1. PMID: 37612310; PMCID: PMC10447583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447583/ (Full text)

Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID

Abstract:

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important.

Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types.

Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.

Source: Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, Kaminski CY, Ruunstrom MC, Cooper KR, Truong AD, Dixit AN, Han JE, Ramonell RP, Haddad NS, Rudolph ME, Yalavarthi S, Betin V, Natoli T, Navaz S, Jenks SA, Zuo Y, Knight JS, Khosroshahi A, Lee FE, Sanz I. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023 Jul 14;14(1):4201. doi: 10.1038/s41467-023-40012-7. PMID: 37452024; PMCID: PMC10349085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349085/ (Full text)

Multiomic characterisation of the long-term sequelae of SARS survivors: a clinical observational study

Abstract:

Background: We aimed to characterise the long-term health outcomes of survivors of severe acute respiratory syndrome (SARS) and determine their recovery status and possible immunological basis.

Methods: We performed a clinical observational study on 14 health workers who survived SARS coronavirus infection between Apr 20, 2003 and Jun 6, 2003 in Haihe Hospital (Tianjin, China). Eighteen years after discharge, SARS survivors were interviewed using questionnaires on symptoms and quality of life, and received physical examination, laboratory tests, pulmonary function tests, arterial blood gas analysis, and chest imaging. Plasma samples were collected for metabolomic, proteomic, and single-cell transcriptomic analyses. The health outcomes were compared 18 and 12 years after discharge. Control individuals were also health workers from the same hospital but did not infect with SARS coronavirus.

Findings: Fatigue was the most common symptom in SARS survivors 18 years after discharge, with osteoporosis and necrosis of the femoral head being the main sequelae. The respiratory function and hip function scores of the SARS survivors were significantly lower than those of the controls. Physical and social functioning at 18 years was improved compared to that after 12 years but still worse than the controls. Emotional and mental health were fully recovered. Lung lesions on CT scans remained consistent at 18 years, especially in the right upper lobe and left lower lobe lesions. Plasma multiomics analysis indicated an abnormal metabolism of amino acids and lipids, promoted host defense immune responses to bacteria and external stimuli, B-cell activation, and enhanced cytotoxicity of CD8+ T cells but impaired antigen presentation capacity of CD4+ T cells.

Interpretation: Although health outcomes continued to improve, our study suggested that SARS survivors still suffered from physical fatigue, osteoporosis, and necrosis of the femoral head 18 years after discharge, possibly related to plasma metabolic disorders and immunological alterations.

Funding: This study was funded by the Tianjin Haihe Hospital Science and Technology Fund (HHYY-202012) and Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-063B, TJYXZDXK-067C).

Source: Li K, Wu Q, Li H, Sun H, Xing Z, Li L, Chen H. Multiomic characterisation of the long-term sequelae of SARS survivors: a clinical observational study. EClinicalMedicine. 2023 Apr;58:101884. doi: 10.1016/j.eclinm.2023.101884. Epub 2023 Feb 27. PMID: 36873427; PMCID: PMC9969173.

Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions. The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS. In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease.

Methods: In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home. RNA from the fingerstick blood was tested using DxTerity’s 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method.

Results: Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease. From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to patients with mild to moderate disease conditions. These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases. These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA). Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives).

Conclusions: Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity. These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.

Source: Wang Z, Waldman MF, Basavanhally TJ, Jacobs AR, Lopez G, Perichon RY, Ma JJ, Mackenzie EM, Healy JB, Wang Y, Hersey SA. Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome. J Transl Med. 2022 Oct 25;20(1):486. doi: 10.1186/s12967-022-03682-3. PMID: 36284352; PMCID: PMC9592873.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592873/ (Full study)

Inflammation and autoreactivity define a discrete subset of patients with post-acute sequelae of COVID-19, or long-COVID

Abstract:

While significant attention has been paid to the immunologic determinants of disease states associated with COVID-19, their contributions to post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, it is critical to understand if specific features of the disease are associated with discrete immune processes, and whether those processes may be therapeutically targeted. To this end, we performed wide immunologic and serological characterization of patients in the early recovery phase of COVID-19 across a breadth of symptomatic presentations.

Using high-parameter proteomics screening and applied machine learning (ML), we identify clear signatures of immunologic activity between PASC patients and uncomplicated recovery, dominated by inflammatory cytokine signaling, neutrophil activity, and markers of cell death. Consistent with disease complexity, heterogeneity in plasma profiling reveals distinct PASC subsets with striking divergence in these ongoing inflammatory processes, here termed plasma quiescent (plaq) and inflammatory (infl) PASC.

In addition to elevated inflammatory blood proteomics, inflPASC patients display positive clinical tests of acute inflammation including C-reactive protein and fibrinogen, increased B cell activity with extrafollicular involvement coupled with elevated targeting of viral nucleocapsid protein and clinical autoreactivity. Further, the unique plasma signatures of PASC patients allowed for the creation of refined models with high sensitivity and specificity for the positive identification of inflPASC with a streamlined assessment of 12 blood markers. Additionally, refined ML modeling highlights the unexpected significance of several markers of potential diagnostic or therapeutic use for PASC in general, including the peptide hormone, epiregulin.

In all, this work identifies clear biological signatures of PASC with potential diagnostic and therapeutic potential and establishes clear disease subtypes that are both easily identifiable and highly relevant to ongoing efforts in both therapeutic targeting and epidemiological investigation of this highly complex disease.

Source: Matthew Woodruff, Kevin S Bonham, Fabliha A Anam, Tiffany Walker, Yusho Ishii, Candice Y Kaminski, Martin Runnstrom, Alexander Truong, Adviteeya Dixit, Jenny Han, Richard Ramonell, Natalie S. Haddad, Mark Rudoloph, Arezou Khosroshahi, Scott A Jenks, F. Eun-Hyung Lee, Ignacio Sanz. Inflammation and autoreactivity define a discrete subset of patients with post-acute sequelae of COVID-19, or long-COVID. medRxiv 2021.09.21.21263845; doi: https://doi.org/10.1101/2021.09.21.21263845.  (Full text available as PDF file)

Treatment of persistent COVID-19 in two B-cell-depleted patients with the monoclonal antibody Sotrovimab

Abstract:

Background: Patients having undergone B-cell-depletion with anti-CD20-antibodies have a higher risk of mortality, delayed viral clearance and prolonged infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report two cases of patients with persistent coronavirus disease 2019 (COVID-19) in association with B-cell-depletion that were treated with the monoclonal antibody Sotrovimab.

Case presentation: Both patients presented with chronic symptoms of COVID-19 such as dyspnea, fatigue, and chest pain. Nasopharyngeal swabs remained positive months after the initial infection with fluctuating cycle threshold (Ct) values around 30. Both patients received a single infusion with the monoclonal SARS-CoV-2 antibody Sotrovimab, which resulted in a rapid improvement of symptoms and inflammation markers as well as negative SARS-CoV-2 swabs. A follow-up after a month showed ongoing improvement of symptoms, persistent negative SARS-CoV-2 swabs, and positive serum antibodies.

Conclusion: Infusion with the monoclonal SARS-CoV-2 antibody led to rapid improvement in two patients with persistent COVID-19 after B-cell depletion.

Source: Totschnig D, Doberer D, Haberl R, Wenisch C, Valipour A. Treatment of persistent COVID-19 in two B-cell-depleted patients with the monoclonal antibody Sotrovimab. IDCases. 2022;29:e01528. doi: 10.1016/j.idcr.2022.e01528. Epub 2022 Jun 7. PMID: 35694274; PMCID: PMC9172259. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172259/ (Full text)

Skewing of the B cell receptor repertoire in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by fatigue and post-exertional malaise, accompanied by various signs of neurological and autonomic dysfunction. ME/CFS is often triggered by an infectious episode and associated with an aberrant immune system. Here we report that ME/CFS is a disorder characterized by skewed B cell receptor gene usage. By applying a next-generation sequencing to determine the clone-based IGHV/IGHD/IGHJ repertoires, we revealed a biased usage of several IGHV genes in peripheral blood B cells from ME/CFS patients. Results of receiver operating characteristic (ROC) analysis further indicated a possibility of distinguishing patients from healthy controls, based on the skewed B cell repertoire. Meanwhile, B cell clones using IGHV3-30 and IGHV3-30-3 genes were more frequent in patients with an obvious infection-related episode at onset, and correlated to expression levels of interferon response genes in plasmablasts. Collectively, these results imply that B cell responses in ME/CFS are directed against an infectious agents or priming antigens induced before disease onset.

Source: Sato W, Ono H, Matsutani T, Nakamura M, Shin I, Amano K, Suzuki R, Yamamura T. Skewing of the B cell receptor repertoire in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun. 2021 Mar 29:S0889-1591(21)00153-7. doi: 10.1016/j.bbi.2021.03.023. Epub ahead of print. PMID: 33794313. https://pubmed.ncbi.nlm.nih.gov/33794313/

Treatment Avenues in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Split-gender Pharmacogenomic Study of Gene-expression Modules

Abstract:

PURPOSE: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisymptom illness impacting up to 1 million people in the United States. As the pathogenesis and etiology of this complex condition are unclear, prospective treatments are limited. Identifying US Food and Drug Administration-approved drugs that may be repositioned as treatments for ME/CFS may offer a rapid and cost-effective solution.

METHODS: Here we used gene-expression data from 33 patients with Fukuda-defined ME/CFS (23 females, 10 males) and 21 healthy demographically comparable controls (15 females, 6 males) to identify differential expression of predefined gene-module sets based on nonparametric statistics. Differentially expressed gene modules were then annotated via over-representation analysis using the Consensus Pathway database. Differentially expressed modules were then regressed onto measures of fatigue and cross-referenced with drug atlas and pharmacogenomics databases to identify putative treatment agents.

FINDINGS: The top 1% of modules identified in males indicated small effect sizes in modules associated with immune regulation and mitochondrial dysfunction. In females, modules identified included those related to immune factors and cardiac/blood factors, returning effect sizes ranging from very small to intermediate (0.147 < Cohen δ < 0.532). Regression analysis indicated that B-cell receptors, T-cell receptors, tumor necrosis factor α, transforming growth factor β, and metabolic and cardiac modules were strongly correlated with multiple composite measures of fatigue. Cross-referencing identified genes with pharmacogenomics data indicated immunosuppressants as potential treatments of ME/CFS symptoms.

IMPLICATIONS: The findings from our analysis suggest that ME/CFS symptoms are perpetuated by immune dysregulation that may be approached via immune modulation-based treatment strategies. (Clin Ther. 2019;41:XXX-XXX) © 2019 Elsevier Inc.

Copyright © 2019. Published by Elsevier Inc.

Source: Jeffrey MG, Nathanson L, Aenlle K, Barnes ZM, Baig M, Broderick G, Klimas NG, Fletcher MA, Craddock TJA. Treatment Avenues in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Split-gender Pharmacogenomic Study of Gene-expression Modules. Clin Ther. 2019 Mar 6. pii: S0149-2918(19)30047-5. doi: 10.1016/j.clinthera.2019.01.011. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30851951

CD24 expression and B cell maturation shows a novel link with energy metabolism: potential implications for patients with Myalgic Encephalomyelitis / Chronic Fatigue Syndrome

Abstract:

CD24 expression on pro-B cells plays a role in B cell selection and development in the bone marrow. We previously detected higher CD24 expression and frequency within IgD+ naïve and memory B cells in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) compared with age-matched healthy controls (HC). Here, we investigated the relationship between CD24 expression and B cell maturation.

In vitro stimulation of isolated B cells in response to conventional agonists were used to follow the dynamics of CD24 positivity during proliferation and differentiation (or maturation). The relationship between CD24 expression to cycles of proliferation and metabolism in purified B cells from HC was also investigated using phospho-flow (phosphorylation of AMPK-pAMPK), 1proton nuclear magnetic resonance and Mitotracker Far-red (Mitochondrial mass-MM).

In vitro, in the absence of stimulation, there was an increased percentage of CD24+ viable B cells in ME/CFS patients compared to HC (p< 0.05) following 5 days culture. Following stimulation with B cell agonists, percentage of CD24+B cells in both naïve and memory B cell populations decreased. p< 0.01). There was a negative relationship between percentage of CD24+B cells with MM (R2=0.76; p< 0.01), which was subsequently lost over sequential cycles of proliferation. There was a significant correlation between CD24 expression on B cells and the usage of glucose and secretion of lactate in vitro. Short term ligation of the B cell receptor with anti-IgM antibody significantly reduced the viability of CD24+ memory B cells compared to those cross-linked by anti-IgD or anti-IgG antibody.

A clear difference was found between naïve and memory B cells with respect to CD24 expression and pAMPK, most notably a strong positive association in IgD+IgM+ memory B cells. In vitro findings confirmed dysregulation of CD24-expressing B cells from ME/CFS patients previously suggested by immunophenotype studies of B cells from peripheral blood. CD24-negative B cells underwent productive proliferation whereas CD24+ B cells were either unresponsive or susceptible to cell death upon BCR-engagement alone. We suggest that CD24 expression may reflect variations in energy metabolism on different B cell subsets.

Source: Fane K. Mensah, Christopher W. Armstrong, Venkat Reddy, Amolak S. Bansal, Saul Berkovitz, Maria Leandro and Geraldine Cambridge. CD24 expression and B cell maturation shows a novel link with energy metabolism: potential implications for patients with Myalgic
Encephalomyelitis / Chronic Fatigue Syndrome. Front. Immunol. | doi: 10.3389/fimmu.2018.02421 https://www.frontiersin.org/articles/10.3389/fimmu.2018.02421/abstract