Development of an expert system for the classification of myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe condition with an uncertain origin and a dismal prognosis. There is presently no precise diagnostic test for ME/CFS, and the diagnosis is determined primarily by the presence of certain symptoms. The current study presents an explainable artificial intelligence (XAI) integrated machine learning (ML) framework that identifies and classifies potential metabolic biomarkers of ME/CFS.

Metabolomic data from blood samples from 19 controls and 32 ME/CFS patients, all female, who were between age and body mass index (BMI) frequency-matched groups, were used to develop the XAI-based model. The dataset contained 832 metabolites, and after feature selection, the model was developed using only 50 metabolites, meaning less medical knowledge is required, thus reducing diagnostic costs and improving prognostic time. The computational method was developed using six different ML algorithms before and after feature selection. The final classification model was explained using the XAI approach, SHAP.

The best-performing classification model (XGBoost) achieved an area under the receiver operating characteristic curve (AUCROC) value of 98.85%. SHAP results showed that decreased levels of alpha-CEHC sulfate, hypoxanthine, and phenylacetylglutamine, as well as increased levels of N-delta-acetylornithine and oleoyl-linoloyl-glycerol (18:1/18:2)[2], increased the risk of ME/CFS. Besides the robustness of the methodology used, the results showed that the combination of ML and XAI could explain the biomarker prediction of ME/CFS and provided a first step toward establishing prognostic models for ME/CFS.

Source: Yagin FH, Shateri A, Nasiri H, Yagin B, Colak C, Alghannam AF. Development of an expert system for the classification of myalgic encephalomyelitis/chronic fatigue syndrome. PeerJ Comput Sci. 2024 Mar 20;10:e1857. doi: 10.7717/peerj-cs.1857. PMID: 38660205; PMCID: PMC11041999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041999/ (Full text)

Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic illness often triggered by an initiating acute event, mainly viral infections. The transition from acute to chronic disease remains unknown, but interest in this phenomenon has escalated since the COVID-19 pandemic and the post-COVID-19 illness, termed ‘long COVID’ (LC). Both ME/CFS and LC share many clinical similarities.

Here, we present recent findings in ME/CFS research focussing on proposed disease pathologies shared with LC. Understanding these disease pathologies and how they influence each other is key to developing effective therapeutics and diagnostic tests. Given that ME/CFS typically has a longer disease duration compared with LC, with symptoms and pathologies evolving over time, ME/CFS may provide insights into the future progression of LC.

Source: Annesley SJ, Missailidis D, Heng B, Josev EK, Armstrong CW. Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol Med. 2024 Mar 4:S1471-4914(24)00028-5. doi: 10.1016/j.molmed.2024.02.003. Epub ahead of print. PMID: 38443223. https://www.sciencedirect.com/science/article/pii/S1471491424000285 (Full text)

Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series

Highlights:

• Both Long COVID and ME/CFS are characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα.

• In a small Long COVID and ME/CFS case series, patients’ immune deficiency and health improve during treatment period with a nebulized antioxidant, anti-pathogen and immune-modulatory pharmacological agent.

• This work provides evidence of a useful biomarker, CD8 T-cell dysfunction reminiscent of T cell exhaustion, that may assist diagnosis and have utility for tracking disease outcome during therapy, including response to a potential new treatment.

Abstract:

Background: Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system.

Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3–15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients.

Conclusions: Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.

Source: Gil, A., Hoag, G.E., Salerno, J.P., Hornig, M., Klimas, N., Selin, L.K. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/antipathogen agent in a retrospective case series. Brain, Behavior, & Immunity – Health (2024), doi: https://doi.org/10.1016/j.bbih.2023.100720 https://www.sciencedirect.com/science/article/pii/S2666354623001345 (Full text)

Role of pharmacological activity of autoantibodies in ME/CFS

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a condition characterised by extreme fatigue, memory impairment, pain and other symptoms that vary from patient to patient. It affects about 0.9% of the population and is often triggered by an acute viral or bacterial infection, such as Epstein-Barr virus. The underlying physiological and molecular basis of ME/CFS is unknown, and no effective treatments exist.

One proposed mechanism is that the blood flow is altered by autoantibodies against receptors involved in blood flow regulation. Antibodies are generated by the immune system to recognise intruders and under normal conditions, our immune system is trained not to attack our own tissues. However, during a severe infection, the immune system adopts an “all hands on deck” approach, which results in some of the newly-produced antibodies escaping quality control and targeting our own tissues, autoantibodies. Receptors regulation blood flow are located in walls of blood vessels and cause a blood vessel to dilate or contract as the demand for oxygen and nutrients to tissues such as the brain or muscles changes. Research has found increased levels of these autoantibodies in ME/CFS patients and initial trials removing these autoantibodies from the blood using a technique called immunoadsorption have shown improvement in symptoms.

In this project, we will test the hypothesis that autoantibodies can activate or inhibit the receptors responsible for the blood flow regulation, in a similar way medical drugs are used to regulate blood pressure.
We aim to profile serum samples from 325 ME/CFS patients and 130 healthy individuals to determine the presence of autoantibodies against all thirty receptors involved in blood pressure regulation. Importantly, we will study the ability of autoantibodies detected in each sample to activate or inhibit these receptors in order to test the hypothesis that the activity of these autoantibodies is a decisive factor in the disease.
If our hypothesis is correct, we will be able to develop an accurate blood test that may be able to detect ME/CFS earlier or to independently confirm the diagnosis. Ultimately, we hope that these results may also indicate a possible route for therapeutic intervention to counteract the effects of autoantibodies and alleviate the ME/CFS symptoms using a combination of already existing drugs, specific for each individual case.

 

Technical Summary:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a condition of extreme tiredness and brain fog, often triggered by an acute infection. Its prevalence is ca 0.9% and here is no effective treatment. Competing theories for the root cause of ME/CFS include metabolic or redox homeostasis disruption, and presence of autoantibodies (AABs) against G protein coupled receptors (GPCRs) involved in regulation of blood flow.
Triggered by acute infection, autoimmunity is a result of reduced immuno-vigilance during severe infections, when an “all hands on deck” approach confers survival advantage. About 30% of ME/CFS patients show increased titre of autoantibodies against beta2-adrenoceptor and M3/4 muscarinic receptors controlling vasodilation/vasoconstriction, but this could become higher if all 30 receptors controlling blood flow would be taken into account.
In this project, we will test a hypothesis that the pharmacological activity of AABs against GPCRs is the key to their involvement in ME/CFS. Similar to medical drugs, AABs can be stimulatory (agonistic) or inhibitory (antagonistic) and induce a therapeutic or an undesired side effect.
We will profile 325 patient samples and 130 control plasma samples for AABs and their pharmacological activity using a state-of-the art GPCR drug screening pipeline we have established, against all 30 GPCRs involved in blood pressure regulation. We also have machine learning expertise that would allow us to interpret this extensive dataset, extract the most salient features. This will advance the understanding of the molecular basis of ME/CFS and could form the basis of a robust diagnostic blood test for ME/CFS. Ultimately, our findings may point in the direction of developing combination therapy using repurposed drugs to counteract the effects of autoantibodies and mitigate ME/CFS symptoms and stimulate the development of specific B-cell elimination strategy to cure ME/CFS.
Source: Lead Research Organisation: University of Nottingham, Department Name: School of Life Sciences. https://gtr.ukri.org/projects?ref=MR%2FY003667%2F1&pn=0&fetchSize=25&selectedSortableField=date&selectedSortOrder=ASC

Characterization of subgroups of myalgic encephalomyelitis/chronic fatigue syndrome based on disease onset, symptoms and biomarkers

Abstract:

Myalgic encephalomyelitis, also called chronic fatigue syndrome (ME/CFS), is an acquired multisystem disease. The core symptoms include fatigue, exercise intolerance and pain as well as cognitive, autonomic and immunological manifestations. The diagnosis of ME/CFS is based on clinical criteria. Specific biomarkers do not currently exist, but studies suggest a role for soluble cluster of differentiation 26 (sCD26) and autoantibodies (AAK) against G protein-coupled receptors (GPCR). In many cases, the disease begins as a result of infections. 

The aim of this work was to determine the pathophysiological significance of potential biomarkers, assuming different development mechanisms in patients with infection-associated disease onset compared to those with other triggers. In a first study, sCD26, also called dipeptidyl peptidase-4 (DPP-4) due to its enzymatic activity, was analyzed and compared in the serum of 205 ME/CFS patients and 98 controls. This was followed by a comprehensive correlation analysis between sCD26 and clinical and laboratory parameters for ME/CFS patients, separated by type of disease onset. In addition, CD26 expression on lymphocyte subpopulations was determined for 12 patients and 12 controls. 

In another study, a correlation analysis was carried out between AAK against vasoregulatory GPCR and symptoms in 116 ME/CFS patients, separated by type of disease onset. It was shown that in ME/CFS patients with infection-associated disease onset, sCD26 correlated with numerous immunological and metabolic parameters, the changes of which have also been described in connection with DPP-4 inhibitors. In addition, there were inverse correlations with AAK against alpha1-adrenergic and M3-acetylcholine receptors. 

In this subgroup, the second study found correlations between numerous GPCR-AAK and the severity of fatigue, muscle pain and cognitive symptoms as well as greater functional impairment relevant to everyday life. None of these correlations were found in patients without infection-associated disease onset. 

Here, sCD26 correlated inversely with orthostatically induced heart rate increases and AAK against alpha- and beta-adrenergic receptors with the severity of orthostatic symptoms. Different correlation patterns between AAK against GPCR and symptoms allow us to assume that in patients with ME/CFS, an altered function of the AAK or its receptors or signaling pathways has occurred as a result of an infection. The association of sCD26 and GPCR-AAK also indicates the dysregulation of other parts of the immune system with potentially pathological consequences. The differences presented compared to patients with non-infectious genesis suggest two definable subgroups.

Source: Szklarski, Marvin. Characterization of subgroups of myalgic encephalomyelitis/chronic fatigue syndrome based on disease onset, symptoms and biomarkers. Charité – University Medicine Berlin, dissertation. https://refubium.fu-berlin.de/handle/fub188/40276

Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study

Abstract:

Background: Around 10% of people who had COVID-9 infection suffer from persistent symptoms such as fatigue, dyspnoea, chest pain, arthralgia/myalgia, sleep disturbances, cognitive dysfunction and impairment of mental health. Different underlying pathomechanisms appear to be involved, in particular inflammation, alterations in amino acid metabolism, autonomic dysfunction and gut dysbiosis.

Aim: As routine tests are often inconspicuous in patients with Long COVID (LC), similarly to patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), accessible biomarkers indicating dysregulation of specific pathways are urgently needed to identify underlying pathomechanisms and enable personalized medicine treatment. Within this pilot study we aimed to proof traceability of altered metabolism by urine analysis.

Patients and methods: Urine metabolome analyses were performed to investigate the metabolic signature of patients with LC (n = 25; 20 women, 5 men) in comparison to healthy controls (Ctrl, n = 8; 7 women, 1 man) and individuals with ME/CFS (n = 8; 2 women, 6 men). Concentrations of neurotransmitter precursors tryptophan, phenylalanine and their downstream metabolites, as well as their association with symptoms (fatigue, anxiety and depression) in the patients were examined.

Results and conclusion: Phenylalanine levels were significantly lower in both the LC and ME/CFS patient groups when compared to the Ctrl group. In many LC patients, the concentrations of downstream metabolites of tryptophan and tyrosine, such as serotonin, dopamine and catecholamines, deviated from the reference ranges. Several symptoms (sleep disturbance, pain or autonomic dysfunction) were associated with certain metabolites. Patients experiencing fatigue had lower levels of kynurenine, phenylalanine and a reduced kynurenine to tryptophan ratio (Kyn/Trp). Lower concentrations of gamma-aminobutyric acid (GABA) and higher activity of kynurenine 3-monooxygenase (KMO) were observed in patients with anxiety.

Conclusively, our results suggest that amino acid metabolism and neurotransmitter synthesis is disturbed in patients with LC and ME/CFS. The identified metabolites and their associated dysregulations could serve as potential biomarkers for elucidating underlying pathomechanisms thus enabling personalized treatment strategies for these patient populations.

Source: Taenzer M, Löffler-Ragg J, Schroll A, Monfort-Lanzas P, Engl S, Weiss G, Brigo N, Kurz K. Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study. Int J Tryptophan Res. 2023 Dec 22;16:11786469231220781. doi: 10.1177/11786469231220781. PMID: 38144169; PMCID: PMC10748708. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748708/ (Full text)

Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed-or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, research of our group revealed that antibodies to beta2adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS.

The purpose of this study is to investigate the joint potential of inflammatome -characterized by interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, IgA) and receptor-based biomarkers (anti-M3, anti-M4, anti-β2AdR) determined for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies.

Methods: A dataset was used originating from 188 persons, including 54 healthy controls, 30 patients classified as “mild” by severity, 73 as “moderate,” and 31 as “severe,” clinically assessed by Fukuda/CDC 1994 and International consensus criteria. Markers characterizing inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods.

Statistical analysis was done via correlation analysis, principal component, and linear discriminant analysis, and random forest classification; inter-group differences tested via nonparametric Kruskal-Wallis H test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney U test.

The association between inflammatome and immunome markers is broader and stronger (coupling) in severe group. Principal component factoring separate components affiliated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an out-of-box accuracy for splitting healthy/with condition groups of over 90%, and of 45% for healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6.

Discussion: Association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, coupling effects between inflammation and immunity have a potential for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.

Source: Uldis Berkis, Simons Svirskis, Angelika Krumina, Sabine Gravelsina, Anda Vilmane, Diana Araja, Zaiga Nora-Krukle, Modra Murovska. Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression. Frontiers in Immunology. Sec. Autoimmune and Autoinflammatory Disorders : Autoimmune Disorders. Volume 14- 2023.  https://www.frontiersin.org/articles/10.3389/fimmu.2023.1294758/abstract

Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS.

Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology.

Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia.

We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.

Source: Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol. 2023 Nov 28. doi: 10.1007/s12035-023-03784-z. Epub ahead of print. PMID: 38015302. https://pubmed.ncbi.nlm.nih.gov/38015302/

IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry

Abstract:

The diagnosis and the pathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remain under debate. However, there is a growing body of evidence for an autoimmune component in ME/CFS caused by the Epstein-Barr virus (EBV) and other viral infections.
In this work, we took advantage of a large public dataset on the IgG antibodies to 3,054 EBV peptides to understand whether these immune responses could be used as putative biomarkers for disease diagnosis and triggers of pathological autoimmunity in ME/CFS patients using healthy controls (HCs) as a comparator cohort. We then aimed at predicting disease status of study participants using a Super Learner algorithm targeting an accuracy of 85% when splitting data into train and test datasets.
When we compared data of all ME/CFS patients or data of a subgroup of these patients with non-infectious or unknown disease trigger to the dataset of HC, we could not find an antibody-based classifier that would meet the desired accuracy in the test dataset. In contrast, we could identify a 26-antibody classifier that could distinguish ME/CFS patients with an infectious disease trigger from HCs with 100% and 90% accuracies on the train and test sets, respectively.
We finally performed a bioinformatic analysis of the EBV peptides associated with these 26 antibodies. We found no correlation between the importance metric of the selected antibodies in the classifier and the maximal sequence homology between human proteins and each EBV peptide recognized by these antibodies.
In conclusion, these 26 antibodies against EBV have an effective potential for disease diagnosis of a subset of patients, but they are less likely to trigger pathological autoimmune responses that could explain the pathogenesis of ME/CFS.
Source: Fonseca, A.; Szysz, M.; Ly, H.T.; Cordeiro, C.; Sepúlveda, N. IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry. Preprints 2023, 2023111523. https://doi.org/10.20944/preprints202311.1523.v1 https://www.preprints.org/manuscript/202311.1523/v1 (Full text available as PDF file)

Investigation into the Plasma Proteome Signature in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background: ME/CFS is a complex disease with unclear etiology. Current diagnostic criteria lack objective laboratory measures.

Aims: This study aimed to investigate the plasma proteomic profile of ME/CFS patients and determine any differentially expressed proteins compared to controls.

Methods: Plasma samples obtained from 19 ME/CFS patients and 9 controls underwent analysis (Somalogic, Inc, CO). The ME/CFS patients met the National Academy of Medicine criteria for the disease. Samples were collected from a mixed venous compartment. Statistical analysis and a Mixed Graphical Model were used to identify candidate biomarker.

Results: Among ~7000 proteins detected, ~400 were differentially expressed between patients and controls (False Discovery Rate<0.05 and Absolute Fold Change ≥1.5). Selectin E (SELE), ATP Synthase Subunit F6 (ATP5PF), and Transcobalamin 2 (TCN2) were identified as top candidates. A classifier of these proteins in pulmonary artery blood of patients were distinguishable from controls (AUC =0.99).

Conclusion: The study highlighted potential biomarkers for ME/CFS, the top candidates of which are involved in inflammation, cellular energy metabolism, and Vitamin B12 transport. The plasma proteomic signature identifies ME/CFS from normals and suggests that the disease’s pathophysiology is driven by abnormalities of aerobic metabolism, vascular dysregulation, and Vitamin B12 metabolism.

Source: Johanna SquiresSarra Al-ZayerPeng LiWenzhong XiaoDavid Systrom. Investigation into the Plasma Proteome Signature in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). https://erj.ersjournals.com/content/62/suppl_67/PA2960.abstract