Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α

Abstract:

The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated.

In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period.

Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGASSTING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGASSTING and IFN-α levels (p < 0.05).

Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.

Source: Queiroz, M.A.F., Brito, W.R.S., Pereira, K.A.S. et al. Severe COVID-19 and long COVID are associated with high expression of STINGcGAS and IFN-α. Sci Rep 14, 4974 (2024). https://doi.org/10.1038/s41598-024-55696-0 https://www.nature.com/articles/s41598-024-55696-0 (Full text)

Analysis and clinical determinants of post-COVID-19 syndrome in the Lombardy region: evidence from a longitudinal cohort study

Abstract:

Objective: To define macro symptoms of long COVID and to identify predictive factors, with the aim of preventing the development of the long COVID syndrome.

Design: A single-centre longitudinal prospective cohort study conducted from May 2020 to October 2022.

Setting: The study was conducted at Luigi Sacco University Hospital in Milan (Italy). In May 2020, we activated the ARCOVID (Ambulatorio Rivalutazione COVID) outpatient service for the follow-up of long COVID.

Participants: Hospitalised and non-hospitalised patients previously affected by COVID-19 were either referred by specialists or general practitioners or self-referred.

Intervention: During the first visit, a set of questions investigated the presence and the duration of 11 symptoms (palpitations, amnesia, headache, anxiety/panic, insomnia, loss of smell, loss of taste, dyspnoea, asthenia, myalgia and telogen effluvium). The follow-up has continued until the present time, by sending email questionnaires every 3 months to monitor symptoms and health-related quality of life.

Primary and secondary outcome measures: Measurement of synthetic scores (aggregation of symptoms based on occurrence and duration) that may reveal the presence of long COVID in different clinical macro symptoms. To this end, a mixed supervised and empirical strategy was adopted. Moreover, we aimed to identify predictive factors for post-COVID-19 macro symptoms.

Results: In the first and second waves of COVID-19, 575 and 793 patients (respectively) were enrolled. Three different post-COVID-19 macro symptoms (neurological, sensorial and physical) were identified. We found significant associations between post-COVID-19 symptoms and (1) the patients’ comorbidities, and (2) the medications used during the COVID-19 acute phase. ACE inhibitors (OR=2.039, 95% CI: 1.095 to 3.892), inhaled steroids (OR=4.08, 95% CI: 1.17 to 19.19) and COVID therapies were associated with increased incidence of the neurological macro symptoms. Age (OR=1.02, 95% CI: 1.01 to 1.04), COVID-19 severity (OR=0.42, 95% CI: 0.21 to 0.82), number of comorbidities (OR=1.22, 95% CI: 1.01 to 1.5), metabolic (OR=2.52, 95% CI: 1.25 to 5.27), pulmonary (OR=1.87, 95% CI: 1.10 to 3.32) and autoimmune diseases (OR=4.57, 95% CI: 1.57 to 19.41) increased the risk of the physical macro symptoms.

Conclusions: Being male was the unique protective factor in both waves. Other factors reflected different medical behaviours and the impact of comorbidities. Evidence of the effect of therapies adds valuable information that may drive future medical choices.

Source: Borgonovo F, Lovaglio PG, Mariani C, Berta P, Cossu MV, Rizzardini G, Vittadini G, Capetti AF. Analysis and clinical determinants of post-COVID-19 syndrome in the Lombardy region: evidence from a longitudinal cohort study. BMJ Open. 2024 Feb 6;14(2):e075185. doi: 10.1136/bmjopen-2023-075185. PMID: 38320835; PMCID: PMC10860093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860093/ (Full text)

From Viral Infection to Autoimmune Reaction: Exploring the Link between Human Herpesvirus 6 and Autoimmune Diseases

Abstract:

The complexity of autoimmunity initiation has been the subject of many studies. Both genetic and environmental factors are essential in autoimmunity development. Among others, environmental factors include infectious agents. HHV-6 is a ubiquitous human pathogen with a high global prevalence. It has several properties suggestive of its contribution to autoimmunity development.
HHV-6 has a broad cell tropism, the ability to establish latency with subsequent reactivation and persistence, and a range of immunomodulation capabilities. Studies have implicated HHV-6 in a plethora of autoimmune diseases—endocrine, neurological, connective tissue, and others—with some studies even proposing possible autoimmunity induction mechanisms. HHV-6 can be frequently found in autoimmunity-affected tissues and lesions; it has been found to infect autoimmune-pathology-relevant cells and influence immune responses and signaling.
This review highlights some of the most well-known autoimmune conditions to which HHV-6 has been linked, like multiple sclerosis and autoimmune thyroiditis, and summarizes the data on HHV-6 involvement in autoimmunity development.
Source: Sokolovska L, Cistjakovs M, Matroze A, Murovska M, Sultanova A. From Viral Infection to Autoimmune Reaction: Exploring the Link between Human Herpesvirus 6 and Autoimmune Diseases. Microorganisms. 2024; 12(2):362. https://doi.org/10.3390/microorganisms12020362 https://www.mdpi.com/2076-2607/12/2/362 (Full text)

Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach

Abstract:

The dermatological manifestations of Long Covid (LC) have languished in the shadows of chronic fatigue and brain fog. Yet they are all linked by gut dysbiosis and the cytokine triad of TNF-α, IL-1β, and IL-6. The gut microbiome common not only to LC, psoriasis, AA, and vitiligo but also to neurodegenerative disease has been recently described. This gut microbiome induces an altered tryptophan metabolism linked to autoimmune disease. SARS CoV2 invades enterochromaffin cells rich in ACE2 receptors and curtails absorption of the essential amino acid tryptophan and subsequent synthesis of serotonin and melatonin.

This review suggests that an etiologic prebiotic (d-mannose)/probiotic (lactobacilli, bifidobacteria)/postbiotic (butyrate) approach to autoimmune skin disease that improves intestinal barrier integrity and that suppresses the triad of TNF-α, IL-6, and IL-1β may enhance or even eliminate the traditional immunotherapy of targeted monoclonal antibodies, Janus kinase inhibitors, and steroids. Health benefits of this approach extend well beyond suppression of autoimmune skin disease.

Source: Chambers, P.W.; Chambers, S.E. Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach. Preprints 2023, 2023121881. https://doi.org/10.20944/preprints202312.1881.v2 https://www.preprints.org/manuscript/202312.1881/v2 (Full text available as PDF file)

IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry

Abstract:

The diagnosis and the pathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remain under debate. However, there is a growing body of evidence for an autoimmune component in ME/CFS caused by the Epstein-Barr virus (EBV) and other viral infections.
In this work, we took advantage of a large public dataset on the IgG antibodies to 3,054 EBV peptides to understand whether these immune responses could be used as putative biomarkers for disease diagnosis and triggers of pathological autoimmunity in ME/CFS patients using healthy controls (HCs) as a comparator cohort. We then aimed at predicting disease status of study participants using a Super Learner algorithm targeting an accuracy of 85% when splitting data into train and test datasets.
When we compared data of all ME/CFS patients or data of a subgroup of these patients with non-infectious or unknown disease trigger to the dataset of HC, we could not find an antibody-based classifier that would meet the desired accuracy in the test dataset. In contrast, we could identify a 26-antibody classifier that could distinguish ME/CFS patients with an infectious disease trigger from HCs with 100% and 90% accuracies on the train and test sets, respectively.
We finally performed a bioinformatic analysis of the EBV peptides associated with these 26 antibodies. We found no correlation between the importance metric of the selected antibodies in the classifier and the maximal sequence homology between human proteins and each EBV peptide recognized by these antibodies.
In conclusion, these 26 antibodies against EBV have an effective potential for disease diagnosis of a subset of patients, but they are less likely to trigger pathological autoimmune responses that could explain the pathogenesis of ME/CFS.
Source: Fonseca, A.; Szysz, M.; Ly, H.T.; Cordeiro, C.; Sepúlveda, N. IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry. Preprints 2023, 2023111523. https://doi.org/10.20944/preprints202311.1523.v1 https://www.preprints.org/manuscript/202311.1523/v1 (Full text available as PDF file)

From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity

Abstract:

The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. This mini-review navigates through the complex landscape of age-associated immune changes, chronic inflammation, age-related autoimmune tendencies, and their potential links with immunopathology of Long COVID. Immunosenescence serves as an introductory departure point, elucidating alterations in immune cell profiles and their functional dynamics, changes in T-cell receptor signaling, cytokine network dysregulation, and compromised regulatory T-cell function.

Subsequent scrutiny of chronic inflammation, or “inflammaging,” highlights its roles in age-related autoimmune susceptibilities and its potential as a mediator of the immune perturbations observed in Long COVID patients. The introduction of epigenetic facets further amplifies the potential interconnections.

In this compact review, we consider the dynamic interactions between immunosenescence, inflammation, and autoimmunity. We aim to explore the multifaceted relationships that link these processes and shed light on the underlying mechanisms that drive their interconnectedness. With a focus on understanding the immunological changes in the context of aging, we seek to provide insights into how immunosenescence and inflammation contribute to the emergence and progression of autoimmune disorders in the elderly and may serve as potential mediator for Long COVID disturbances.

Source: Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol. 2023 Oct 24;14:1298004. doi: 10.3389/fimmu.2023.1298004. PMID: 37942323; PMCID: PMC10628127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628127/ (Full text)

Brain-targeted autoimmunity is strongly associated with Long COVID and its chronic fatigue syndrome as well as its affective symptoms

Abstract:

Background Autoimmune responses contribute to the pathophysiology of Long COVID, affective symptoms and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Objectives To examine whether Long COVID, and its accompanying affective symptoms and CFS are associated with immunoglobulin (Ig)A/IgM/IgG directed at neuronal proteins including myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), synapsin, α+β-tubulin, neurofilament protein (NFP), cerebellar protein-2 (CP2), and the blood-brain-barrier-brain-damage (BBD) proteins claudin-5 and S100B.

Methods IgA/IgM/IgG to the above neuronal proteins, human herpes virus-6 (HHV-6) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were measured in 90 Long COVID patients and 90 healthy controls, while C-reactive protein (CRP), and advanced oxidation protein products (AOPP) in association with affective and CFS ratings were additionally assessed in a subgroup thereof.

Results Long COVID is associated with significant increases in IgG directed at tubulin (IgG-tubulin), MBP, MOG and synapsin; IgM-MBP, MOG, CP2, synapsin and BBD; and IgA-CP2 and synapsin. IgM-SARS-CoV-2 and IgM-HHV-6 antibody titers were significantly correlated with IgA/IgG/IgM-tubulin and -CP2, IgG/IgM-BBD, IgM-MOG, IgA/IgM-NFP, and IgG/IgM-synapsin. Binary logistic regression analysis shows that IgM-MBP and IgG-MBP are the best predictors of Long COVID. Multiple regression analysis shows that IgG-MOG, CRP and AOPP explain together 41.7% of the variance in the severity of CFS. Neural network analysis shows that IgM-synapsin, IgA-MBP, IgG-MOG, IgA-synapsin, IgA-CP2, IgG-MBP and CRP are the most important predictors of affective symptoms due to Long COVID with a predictive accuracy of r=0.801.

Conclusion Brain-targeted autoimmunity contributes significantly to the pathogenesis of Long COVID and the severity of its physio-affective phenome.

Source: Abbas F. Almulla, Michael Maes, Bo Zhou, Hussein K. Al-Hakeim, Aristo Vojdani. Brain-targeted autoimmunity is strongly associated with Long COVID and its chronic fatigue syndrome as well as its affective symptoms. medRxiv [Preprint] https://www.medrxiv.org/content/10.1101/2023.10.04.23296554v1 (Full text available as PDF file)

Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study

Summary:

Background: Case reports suggest that SARS-CoV-2 infection could lead to immune dysregulation and trigger autoimmunity while COVID-19 vaccination is effective against severe COVID-19 outcomes. We aim to examine the association between COVID-19 and development of autoimmune diseases (ADs), and the potential protective effect of COVID-19 vaccination on such an association.

Methods: A retrospective cohort study was conducted in Hong Kong between 1 April 2020 and 15 November 2022. COVID-19 was confirmed by positive polymerase chain reaction or rapid antigen test. Cox proportional hazard regression with inverse probability of treatment weighting was applied to estimate the risk of incident ADs following COVID-19. COVID-19 vaccinated population was compared against COVID-19 unvaccinated population to examine the protective effect of COVID-19 vaccination on new ADs.

Findings: The study included 1,028,721 COVID-19 and 3,168,467 non-COVID individuals. Compared with non-COVID controls, patients with COVID-19 presented an increased risk of developing pernicious anaemia [adjusted Hazard Ratio (aHR): 1.72; 95% Confidence Interval (CI): 1.12–2.64]; spondyloarthritis [aHR: 1.32 (95% CI: 1.03–1.69)]; rheumatoid arthritis [aHR: 1.29 (95% CI: 1.09–1.54)]; other autoimmune arthritis [aHR: 1.43 (95% CI: 1.33–1.54)]; psoriasis [aHR: 1.42 (95% CI: 1.13–1.78)]; pemphigoid [aHR: 2.39 (95% CI: 1.83–3.11)]; Graves’ disease [aHR: 1.30 (95% CI: 1.10–1.54)]; anti-phospholipid antibody syndrome [aHR: 2.12 (95% CI: 1.47–3.05)]; immune mediated thrombocytopenia [aHR: 2.1 (95% CI: 1.82–2.43)]; multiple sclerosis [aHR: 2.66 (95% CI: 1.17–6.05)]; vasculitis [aHR: 1.46 (95% CI: 1.04–2.04)]. Among COVID-19 patients, completion of two doses of COVID-19 vaccine shows a decreased risk of pemphigoid, Graves’ disease, anti-phospholipid antibody syndrome, immune-mediated thrombocytopenia, systemic lupus erythematosus and other autoimmune arthritis.

Interpretation: Our findings suggested that COVID-19 is associated with an increased risk of developing various ADs and the risk could be attenuated by COVID-19 vaccination. Future studies investigating pathology and mechanisms would be valuable to interpreting our findings.

Source: Kuan Peng, Xue Li, Deliang Yang, Shirley C.W. Chan, Jiayi Zhou, Eric Y.F. Wan, et al. Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study. The Lancet, VOLUME 63, 102154, SEPTEMBER 2023 https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(23)00331-0/fulltext (Full text)

Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases?

Abstract:

It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as ‘self’, and otherwise immunologically silent.

The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies.

A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.

Source: Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J. 2023 Aug 16;480(15):1217-1240. doi: 10.1042/BCJ20230241. PMID: 37584410. https://portlandpress.com/biochemj/article/480/15/1217/233389/Are-fibrinaloid-microclots-a-cause-of-autoimmunity (Full text)

Pediatric de novo movement disorders and ataxia in the context of SARS-CoV-2

Abstract:

Objective: In the fourth year of the COVID-19 pandemic, mortality rates decreased, but the risk of neuropsychiatric disorders remained the same, with a prevalence of 3.8% of pediatric cases, including movement disorders (MD) and ataxia.

Methods: In this study, we report on a 10-year-old girl with hemichorea after SARS-CoV-2 infection and immunostained murine brain with patient CSF to identify intrathecal antibodies. Additionally, we conducted a scoping review of children with MD and ataxia after SARS-CoV-2 infection.

Results: We detected antibodies in the patient’s CSF binding unknown antigens in murine basal ganglia. The child received immunosuppression and recovered completely. In a scoping review, we identified further 32 children with de novo MD or ataxia after COVID-19. While in a minority of cases, MD or ataxia were a symptom of known clinical entities (e.g. ADEM, Sydenham’s chorea), in most children, the etiology was suspected to be of autoimmune origin without further assigned diagnosis. (i) Children either presented with ataxia (79%), but different from the well-known postinfectious acute cerebellar ataxia (older age, less favorable outcome, or (ii) had hypo-/hyperkinetic MD (21%), which were choreatic in most cases. Besides 14% of spontaneous recovery, immunosuppression was necessary in 79%. Approximately one third of children only partially recovered.

Conclusions: Infection with SARS-CoV-2 can trigger de novo MD in children. Most patients showed COVID-19-associated-ataxia and fewer-chorea. Our data suggest that patients benefit from immunosuppression, especially steroids. Despite treatment, one third of patients recovered only partially, which makes up an increasing cohort with neurological sequelae.

Source: Wilpert NM, de Almeida Marcelino AL, Knierim E, Incoronato P, Sanchez-Sendin E, Staudacher O, Drenckhahn A, Bittigau P, Kreye J, Prüss H, Schuelke M, Kühn AA, Kaindl AM, Nikolaus M. Pediatric de novo movement disorders and ataxia in the context of SARS-CoV-2. J Neurol. 2023 Jul 29. doi: 10.1007/s00415-023-11853-5. Epub ahead of print. PMID: 37515734. https://link.springer.com/article/10.1007/s00415-023-11853-5 (Full text)