Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection

Abstract:

Background Neutrophils are important in the pathophysiology of COVID-19 but the molecular changes contributing to altered neutrophil phenotypes following SARS-CoV-2 infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery.

Methods Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May-December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched non-infected controls. Neutrophils were isolated from peripheral blood and analysed by mass spectrometry. COVID-19 severity and recovery were defined using the WHO ordinal scale.

Results Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to non-infected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon (IFN) signature but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors.

Conclusions SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.

Footnotes

This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Please open or download the PDF to view this article.

Source: Merete B Long, Andrew JM Howden, Holly R Keir, Christina M Rollings, Yan Hui Giam, Thomas Pembridge, Lilia Delgado, Hani Abo-Leyah, Amy F Lloyd, Gabriel Sollberger, Rebecca Hull, Amy Gilmour, Chloe Hughes, Benjamin JM New, Diane Cassidy, Amelia Shoemark, Hollian Richardson, Angus I Lamond, Doreen A Cantrell, James D Chalmers, Alejandro J Brenes. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection.

Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course

Abstract:

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes.

Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration.

Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.

Source: Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, Maida PA, Moritz J, Toscano C, Ghovehoud E, Furlan R, Barbic F, Voza A, De Nadai G, Cervia C, Zurbuchen Y, Taeschler P, Murray LA, Danelon-Sargenti G, Moro S, Gong T, Piffaretti P, Bianchini F, Crivelli V, Podešvová L, Pedotti M, Jarrossay D, Sgrignani J, Thelen S, Uhr M, Bernasconi E, Rauch A, Manzo A, Ciurea A, Rocchi MBL, Varani L, Moser B, Bottazzi B, Thelen M, Fallon BA, Boyman O, Mantovani A, Garzoni C, Franzetti-Pellanda A, Uguccioni M, Robbiani DF. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023 Mar 6. doi: 10.1038/s41590-023-01445-w. Epub ahead of print. PMID: 36879067. https://www.nature.com/articles/s41590-023-01445-w (Full text)