Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007)

Abstract:

Objective: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often experience debilitating fatigue and autonomic dysregulation, yet objective measurements of these symptoms are limited. This study utilized actigraphic data from the United Kingdom Biobank (UKBB) to investigate (1) reduced activity in those with CFS, (2) decreased amplitudes of daily temperature rhythms as a potential indicator of autonomic dysregulation, and (3) the impact of specific single nucleotide polymorphisms (SNPs) associated with CFS on these actigraphic parameters.

Background: ME/CFS is a complex and poorly understood condition characterized by profound fatigue, postural orthostasis, and temperature dysregulation. Objective metrics reflecting these fatigue-related symptoms are scarce. Previous research explored small-scale actigraphic analyses, shedding light on movement and temperature patterns in CFS, but large-scale investigations remain limited. Genetic factors have also emerged as potential contributors to CFS risk, although how they affect phenotypic manifestations remains unclear.

Design/Methods: Actigraphic data from the UKBB were analyzed to compare those with CFS (n = 295) to controls (n = 63,133). Movement parameters, acceleration amplitudes, and temperature amplitudes were assessed. Additionally, the impact of specific SNPs associated with CFS on actigraphic measurements and subjective fatigue experiences was examined.

Results: In addition to profound fatigue, those with CFS exhibited significantly reduced overall movement (Cohen’s d = −0.220, p-value = 2.42 × 10–15), lower acceleration amplitudes (Cohen’s d = −0.377, p-value = 1.74 × 10−6), and decreased temperature amplitudes (Cohen’s d = −0.173, p-value = 0.002) compared to controls. Furthermore, certain SNPs associated with CFS were found to significantly influence both actigraphic measurements and subjective fatigue experiences.

Conclusions: This study provides valuable insights into the objective characterization of CFS using actigraphy, shedding light on the interaction between genetics and symptomatology in CFS. The findings offer avenues for further research into the pathophysiology of CFS and may contribute to a better understanding of fatigue-related conditions in general.

Source: Patrick Liu, David Raizen, Carsten Skarke, Thomas Brooks, and Ron Anafi. Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007). Neurology, April 9, 2024 issue
102 (17_supplement_1) https://doi.org/10.1212/WNL.0000000000204829 https://www.neurology.org/doi/abs/10.1212/WNL.0000000000204829

Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades’ research.

This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.

Source: Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf). 2024 Mar 14:e14122. doi: 10.1111/apha.14122. Epub ahead of print. PMID: 38483046. https://pubmed.ncbi.nlm.nih.gov/38483046/

Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: a retrospective review

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a heterogeneous disorder with elusive causes, but most likely because of clinical and other biological factors. As a vital environmental factor, the gut microbiome is increasingly emphasized in various refractory diseases including ME/CFS. The present study is aimed to enhance our understanding of the relationship between the gut microbiome and ME/CFS through data analysis of various clinical studies.

We conducted a literature search in four databases (PubMed, Cochrane Library, Web of Science, and Google Scholar) until May 31, 2023. Our analysis encompassed 11 clinical studies with 553 ME/CFS patients and 480 healthy controls. A comparative analysis of meta data revealed a significant decrease in α-diversity and a noticeable change in β-diversity in the gut microbiome of ME/CFS patients compared to healthy controls.

The notable ratio of Firmicutes and Bacteroides was 2.3 times decreased, and also, there was a significant reduction in the production of microbial metabolites such as acetate, butyrate, isobutyrate, and some amino acids (alanine, serine, and hypoxanthine) observed in ME/CFS patients.

The lack of comparison under similar conditions with various standardized analytical methods has impeded the optimal calculation of results in ME/CFS patients and healthy controls. This review provides a comprehensive overview of the recent advancements in understanding the role of the gut microbiome in ME/CFS patients. Additionally, we have also discussed the potentials of using microbiome-related interventions and associated challenges to alleviate ME/CFS.

Source: Wang JH, Choi Y, Lee JS, Hwang SJ, Gu J, Son CG. Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: a retrospective review. Eur J Med Res. 2024 Mar 1;29(1):148. doi: 10.1186/s40001-024-01747-1. PMID: 38429822. https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-024-01747-1 (Full text)

Immunosuppression in ME may underlie energy deficits that drive ME symptomology

Interview of Dr. Armin Alaedini by Bronc

In October of 2023 the UK the Department of Health and Social Care held a public consultation to improve the care/life outcomes for people with ME. It included an acknowledgement that there has been a lack of biomedical research into ME but failed to accept the very negative impact this has had on the lives of people living with the illness. It also failed to point the finger at those responsible for this which includes the National Institute of Clinical Excellence and the Medical Research Council amongst others.

Despite calling for more research into ME there is acknowledgement that this will need substantial sums of money for this to happen. The DHSC consultation also asked for views about its plans which included a section about disability benefits and how the Department of Work and Pensions wants to improve the service it provides to those people who claim disability benefits. This laughable comment ignores the war on people claiming disability benefits which has been waged by the DWP since 2010. To compound matters the British government recently announced that it wants to make it harder for people to claim disability benefits and snoop on their bank accounts.

The DWP has consistently failed to acknowledge the debilitating nature of ME and instead focuses on the fluctuating nature of the illness to deny many people with ME disability benefits such as ESA and PIP.

Thankfully, there is plenty of evidence revealing how people with ME suffer from a suppressed immune response which accounts for many of the debilitating symptoms of the illness.

I recently talked with Dr. Armin Alaedini about his recent research into this issue. Dr Alaedini is an assistant professor at Columbia University and principal investigator at the Alaedini Lab. Its research is aimed at identifying ‘novel biomarkers, understanding disease mechanism, and finding therapeutic targets in gastrointestinal and neuropsychiatric disease.’ He is chair of ME/CFS Biospecimen Resource Access Committee at the National Institute of Neurological Disorders and Stroke and a member of the Neurobiology of Pain Study Section at NIH.

Dr Alaedini took time out of his busy schedule to talk to me about his research into ME.

How did you get involved in the field of ME research?

I have always been interested in the study of complex medical conditions, especially those that are poorly understood and understudied. I became specifically involved in ME research because of my acquaintance with Dr. Suzanne Vernon, who at that time was the chief scientific officer at The Solve ME/CFS Initiative. I was fortunate to have her support for a NIH-funded project, which resulted in our recent publication that demonstrates how microbial translocation links gastrointestinal, immunologic, and metabolic defects in ME/CFS.

In the paper you co-authored, Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome, it notes that the relationship between immunologic, metabolic and gastrointestinal abnormalities remains unclear. In your study you examined two groups of people with ME: one at rest and one undergoing an exercise challenge. They were compared to a group of healthy people. Can you explain what differences you noted between the healthy control group and the people with ME and between the two groups of people with ME? What may have caused this elevated antibody response to microbial agents in people with ME?

I had been particularly intrigued by the fact that gastrointestinal complaints are common in ME/CFS. Data from the patients in our study clearly confirmed this, showing that gastrointestinal symptoms were indeed much more common and more severe in ME/CFS study participants than in the non-ME/CFS controls. Along with this, we found a specific marker of injury or damage to the intestinal lining, called FABP2, to be higher in the blood of ME/CFS participants than in controls, providing a potential biological link to least some of the associated gastrointestinal symptoms. Increased intestinal permeability due to damage can lead to greater translocation of dietary and microbial antigens, which are typically constrained within the gut lumen, across the intestinal barrier. This, in turn, may result in an immune response to those translocated dietary and microbial products to counter and remove the potentially inflammatory antigens from systemic circulation.

Indeed, our data pointed to a significant increase in antibody responses to microbial and dietary antigens in ME/CFS patients in comparison to controls. What especially surprised us, however, was the fact that we did not observe an expected rise in the more immediate, or what we call “acute-phase”, innate immune responses. Specifically, we found that despite the increased markers of intestinal damage and higher antibody responses, ME/CFS patients did not exhibit a significant acute-phase immune response to counter circulating microbial products. This was suggestive of a suppressed systemic immune response that could possibly explain some of the ME/CFS symptoms.

Your study also noted ‘Enhanced antibody response to dietary antigens in ME/CFS’. What might be causing this?

The antibody response to dietary antigens is likely part of the same process resulting from a dysfunctional intestinal barrier that results in an enhanced immune response to the contents of the gut lumen. These would include both microbial and dietary antigens that the immune system is generally tolerant to and does not mount a significant antibody response against under normal conditions.

People with ME suffer from post exertion malaise which means that exercise will exacerbate their symptoms. What differences did you note between the healthy participants and people with ME who took the exercise challenge? What might be causing the differences in their response to exercise?

Intense exercise is known to cause increased intestinal permeability. Therefore, a maximal exercise challenge can be a particularly useful tool to better understand the effect of gut barrier function on the dysfunctional immune responses we were seeing in the ME/CFS cohort. The data from the exercise challenge confirmed our earlier data, suggesting that ME/CFS patients have a dysfunctional immune response, characterized by a suppressed innate/acute-phase response that is ineffective at countering microbial translocation from the intestinal tract into systemic circulation.

At the same time, another part of the immune response, the adaptive immune system, tries to compensate for this dysfunction by producing antibodies against those microbial antigens. However, the antibody response appears to be inadequate, as the ME/CFS patients continued to have increased circulating microbial antigens. We hypothesize that these microbial antigens can trigger downstream inflammatory responses that impact the central nervous system and may contribute to some of the hallmark symptoms of ME/CFS, such as fatigue.

We also compared metabolic responses in response to exercise between ME/CFS and control study participants. Of particular significance, we found a suppression of glucose and citrate metabolic responses in ME/CFS that to some extent correlated with the suppressed innate immune responses in these patients. This dysfunctional metabolic response is not only conceivably capable of contributing to the observed immunosuppression in ME/CFS, but it may also further underlie energy deficits that drive ME/CFS symptomology.

In your study you observed an increase in antibody responses to both microbial and dietary antigens, reflecting greater epithelial cell damage, which point to enhanced translocation of gut luminal antigens across a compromised intestinal barrier in ME/CFS. Did your findings point to a possible treatment for this damage to the intestinal barrier?

Indeed, the data point to a number of potential targets to consider for therapy in the context of ME/CFS. These include reducing or repairing the intestinal damage in order to decrease the microbial translocation; blocking or sequestering the already translocated microbial antigens; reversing the identified defects in the acute-phase immune responses towards the microbial antigens, and targeting the suppressed metabolic pathways.

What further research is needed to address the issues highlighted in your study?

More research is needed to better understand the relevance and level of contribution of the identified defects in the intestinal barrier, immune response, and metabolic pathways to ME/CFS symptomology, as well as to further characterize the molecular pathways involved, in order to move this research closer to development of effective treatments for ME/CFS.

Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease characterized by profound fatigue, post-exertional malaise (PEM), and neurocognitive dysfunction. Immune dysregulation and gastrointestinal symptoms are commonly observed in ME/CFS patients. Despite affecting approximately 0.89% of the general population, the underlying pathophysiological mechanisms remain poorly understood. This study aimed to elucidate the relationship between immunological characteristics and intestinal barrier function in ME/CFS patients.

ME/CFS patients were stratified into two groups based on their immune competence. After documentation of detailed medical records, serum and plasma samples were collected for assessment of inflammatory immune mediators and biomarkers for intestinal barrier integrity by ELISA. We found reduced complement protein C4a levels in immunodeficient ME/CFS patients suggesting a sub-group specific innate immune dysregulation. ME/CFS patients without immunodeficiencies exhibit a mucosal barrier leakage, as indicated by elevated levels of Lipopolysaccharide-binding protein (LBP).

Stratifying ME/CFS patients based on immune competence enabled the distinction of two subgroups with different pathophysiological patterns. The study highlights the importance of emphasizing precise patient stratification in ME/CFS, particularly in the context of defining suitable treatment strategies. Given the substantial health and socioeconomic burden associated with ME/CFS, urgent attention and research efforts are needed to define causative treatment approaches.

Source: Rohrhofer, J.; Hauser, L.; Lettenmaier, L.; Lutz, L.; Koidl, L.; Gentile, S.A.; Ret, D.; Stingl, M.; Untersmayr, E. Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Preprints 2023, 2023112007. https://doi.org/10.20944/preprints202311.2007.v1 https://www.preprints.org/manuscript/202311.2007/v1 (Full text available as PDF file)

Sex differences in vascular endothelial function related to acute and long COVID-19

Abstract:

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been at the forefront of health sciences research since its emergence in China in 2019 that quickly led to a global pandemic. As a result of this research, and the large numbers of infected patients globally, there were rapid enhancements made in our understanding of Coronavirus disease 2019 (COVID-19) pathology, including its role in the development of uncontrolled immune responses and its link to the development of endotheliitis and endothelial dysfunction.

There were also some noted differences in the rate and severity of infection between males and females with acute COVID. Some individuals infected with SARS-CoV-2 also experience long-COVID, an important hallmark symptom of this being Myalgic Encephalomyelitis-Chronic Fatigue Syndrome (ME-CFS), also experienced differently between males and females.

The purpose of this review is to discuss the impact of sex on the vasculature during acute and long COVID-19, present any link between ME-CFS and endothelial dysfunction, and provide evidence for the relationship between ME-CFS and the immune system. We also will delineate biological sex differences observed in other post viral infections and, assess if sex differences exist in how the immune system responds to viral infection causing ME-CFS.

Source: Kayla KA, Bédard-Matteau J, Rousseau S, Tabrizchi R, Noriko D. Sex differences in vascular endothelial function related to acute and long COVID-19. Vascul Pharmacol. 2023 Dec 1:107250. doi: 10.1016/j.vph.2023.107250. Epub ahead of print. PMID: 38043758. https://www.sciencedirect.com/science/article/abs/pii/S1537189123001106 (Full text)

Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Here we report preliminary data demonstrating that some patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may have catalytic autoantibodies that cause the breakdown of myelin basic protein (MBP). We propose that these MBP-degradative antibodies are important to the pathophysiology of ME/CFS, particularly in the occurrence of white matter disease/demyelination. This is supported by magnetic resonance imagining studies that show these findings in patients with ME/CFS and could explain symptoms of nerve pain and muscle weakness.

In this work, we performed a series of experiments on patient plasma samples where we isolated and characterized substrate-specific antibodies that digest MBP. We also tested glatiramer acetate (copaxone), an FDA approved immunomodulator to treat multiple sclerosis, and found that it inhibits ME/CFS antibody digestion of MBP. Furthermore, we found that aprotinin, which is a specific serine protease inhibitor, specifically prevents breakdown of MBP while the other classes of protease inhibitors had no effect. This coincides with the published literature describing catalytic antibodies as having serine protease-like activity. Postpandemic research has also provided several reports of demyelination in COVID-19.

Because COVID-19 has been described as a trigger for ME/CFS, demyelination could play a bigger role in patient symptoms for those recently diagnosed with ME/CFS. Therefore, by studying proteolytic antibodies in ME/CFS, their target substrates, and inhibitors, a new mechanism of action could lead to better treatment and a possible cure for the disease.

Source: Jensen MA, Dafoe ML, Wilhelmy J, Cervantes L, Okumu AN, Kipp L, Nemat-Gorgani M, Davis RW. Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biochemistry. 2023 Nov 27. doi: 10.1021/acs.biochem.3c00433. Epub ahead of print. PMID: 38011893. https://pubs.acs.org/doi/10.1021/acs.biochem.3c00433 (Full text)

Case report: Recurrent cervical spinal stenosis masquerading as myalgic encephalomyelitis/chronic fatigue syndrome with orthostatic intolerance

Abstract:

Introduction: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, chronic, multi-system disorder that is characterized by a substantial impairment in the activities that were well tolerated before the illness.

In an earlier report, we had described three adult women who met criteria for ME/CFS and orthostatic intolerance, and had congenital or acquired cervical spinal stenosis. All three experienced substantial global improvements in their ME/CFS and orthostatic intolerance symptoms after recognition and surgical treatment of the cervical stenosis. After a several year period of improvement, one of the individuals in that series experienced a return of ME/CFS and orthostatic intolerance symptoms.

Main Symptoms and Clinical Findings: Radiologic investigation confirmed a recurrence of the ventral compression of the spinal cord due to a shift of the disc replacement implant at the involved cervical spinal level.

Therapeutic Intervention: Decompression of the spinal cord with removal of the implant and fusion at the original C5-C6 level was once again followed by a similar degree of improvement in function as had been observed after the first operation.

This recapitulation of the outcomes after surgical management of cervical stenosis provides further evidence in support of the hypothesis that cervical spinal stenosis can exacerbate pre-existing or cause new orthostatic intolerance and ME/CFS. Especially for those with refractory symptoms and neurological signs, surgical interventions may offer relief for selected patients with this complex condition.

Source: Charles C. Edwards III, Charles C. Edwards II, Scott Heinlein, Peter C. Rowe. Case report: Recurrent cervical spinal stenosis masquerading as myalgic encephalomyelitis/chronic fatigue syndrome with orthostatic intolerance. Frontiers in Neurology, Volume-14- 2023. https://www.frontiersin.org/articles/10.3389/fneur.2023.1284062/abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (Me/Cfs): The Biology of a Neglected Disease

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic disease with debilitating symptoms that impact all aspects of life. The diverse symptom presentation indicates that ME/CFS is likely to have a multifactorial origin. However, it is an extremely understudied disease with no standardised diagnostic criteria or proven treatment avenues. It is hypothesised that environmental insults (such as acute infection, mainly viral) or stress in genetically susceptible individuals may trigger the development of ME/CFS.

These insults result in acute inflammatory responses, along with aberrant immune activation. A spiralling disruption of homeostasis promotes subsequent patho-mechanisms including gut dysbiosis and systemic inflammation, and eventually a pathological clotting system, chronic endothelialitis, vasoconstriction, and hypoxia. Additionally, dysfunctional energy metabolism including oxidative stress is also present in the development of ME/CFS. Since the exact pathophysiology of ME/CFS remains unclear, additional research is required to reveal further insight into this “neglected” disease.

Source: Arron, Hayley and Marsh, Benamin and Khan, M. Asad and Jaeger, Beate and Kell, Douglas and Pretorius, Etheresia, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (Me/Cfs): The Biology of a Neglected Disease. Available at SSRN: https://ssrn.com/abstract=4622074 or http://dx.doi.org/10.2139/ssrn.4622074 (Full text available as PDF file)

Investigation into the Plasma Proteome Signature in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background: ME/CFS is a complex disease with unclear etiology. Current diagnostic criteria lack objective laboratory measures.

Aims: This study aimed to investigate the plasma proteomic profile of ME/CFS patients and determine any differentially expressed proteins compared to controls.

Methods: Plasma samples obtained from 19 ME/CFS patients and 9 controls underwent analysis (Somalogic, Inc, CO). The ME/CFS patients met the National Academy of Medicine criteria for the disease. Samples were collected from a mixed venous compartment. Statistical analysis and a Mixed Graphical Model were used to identify candidate biomarker.

Results: Among ~7000 proteins detected, ~400 were differentially expressed between patients and controls (False Discovery Rate<0.05 and Absolute Fold Change ≥1.5). Selectin E (SELE), ATP Synthase Subunit F6 (ATP5PF), and Transcobalamin 2 (TCN2) were identified as top candidates. A classifier of these proteins in pulmonary artery blood of patients were distinguishable from controls (AUC =0.99).

Conclusion: The study highlighted potential biomarkers for ME/CFS, the top candidates of which are involved in inflammation, cellular energy metabolism, and Vitamin B12 transport. The plasma proteomic signature identifies ME/CFS from normals and suggests that the disease’s pathophysiology is driven by abnormalities of aerobic metabolism, vascular dysregulation, and Vitamin B12 metabolism.

Source: Johanna SquiresSarra Al-ZayerPeng LiWenzhong XiaoDavid Systrom. Investigation into the Plasma Proteome Signature in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). https://erj.ersjournals.com/content/62/suppl_67/PA2960.abstract