Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Here we report preliminary data demonstrating that some patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may have catalytic autoantibodies that cause the breakdown of myelin basic protein (MBP). We propose that these MBP-degradative antibodies are important to the pathophysiology of ME/CFS, particularly in the occurrence of white matter disease/demyelination. This is supported by magnetic resonance imagining studies that show these findings in patients with ME/CFS and could explain symptoms of nerve pain and muscle weakness.

In this work, we performed a series of experiments on patient plasma samples where we isolated and characterized substrate-specific antibodies that digest MBP. We also tested glatiramer acetate (copaxone), an FDA approved immunomodulator to treat multiple sclerosis, and found that it inhibits ME/CFS antibody digestion of MBP. Furthermore, we found that aprotinin, which is a specific serine protease inhibitor, specifically prevents breakdown of MBP while the other classes of protease inhibitors had no effect. This coincides with the published literature describing catalytic antibodies as having serine protease-like activity. Postpandemic research has also provided several reports of demyelination in COVID-19.

Because COVID-19 has been described as a trigger for ME/CFS, demyelination could play a bigger role in patient symptoms for those recently diagnosed with ME/CFS. Therefore, by studying proteolytic antibodies in ME/CFS, their target substrates, and inhibitors, a new mechanism of action could lead to better treatment and a possible cure for the disease.

Source: Jensen MA, Dafoe ML, Wilhelmy J, Cervantes L, Okumu AN, Kipp L, Nemat-Gorgani M, Davis RW. Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biochemistry. 2023 Nov 27. doi: 10.1021/acs.biochem.3c00433. Epub ahead of print. PMID: 38011893. https://pubs.acs.org/doi/10.1021/acs.biochem.3c00433 (Full text)

A prospective randomized, double-blind placebo-controlled study to evaluate the effectiveness of neuroprotective therapy using functional brain MRI in patients with post-covid chronic fatigue syndrome

Abstract:

Background and purpose: to assess executive network using resting-state fMRI and patterns of brain activation using task fMRI with a cognitive paradigm, against the background of taking the drug in comparison with placebo in patients with post-COVID asthenic syndrome.

Methods: The study employed a prospective, randomized, double-blind, placebo-controlled trial approach to assess the efficacy of utilizing functional MRI of the brain as a neuroprotective therapy for treating patients with chronic fatigue syndrome following COVID-19. The study included 30 patients matched by sex and age with post-COVID asthenic syndrome. All patients were examined with MFI-20, MoCA, FAS-10 scales, MRI using a Siemens MAGNETOM Prisma 3 T scanner before and after a course of therapy with coordination complex with succinate acid anion (CCSA) or placebo (15 patients each) using resting state fMRI and with cognitive paradigm.

Results: The changes obtained as a result of the treatment of post-Covid asthenic syndrome demonstrated clinical superiority in the reduction of asthenic symptoms for the group of patients treated with CCSA (MFI-20 scores: -20·0 points in the CCSA group compared to -12 points in the placebo group, p = 0·043). The data obtained also correlate with the analysis of task fMRI and resting state fMRI may indicate an increase in the functional cognitive status after a course of therapy with CCSA. Clinically, this correlates with a statistically significant improvement in the MoCA score (2 points in the CCSA group compared to 1 point in the placebo group, p < 0·05).

Conclusions: The study demonstrates the potential effectiveness of CCSA therapy in relation to a wide range of symptoms (chronic fatigue syndrome/ asthenic syndrome and cognitive impairment) in patients with post-COVID syndrome. The first time demonstrated the effectiveness of neuroprotective therapy after post-COVID asthenic syndrome with the use of high-tech neuroimaging techniques.

Source: Tanashyan M, Morozova S, Raskurazhev A, Kuznetsova P. A prospective randomized, double-blind placebo-controlled study to evaluate the effectiveness of neuroprotective therapy using functional brain MRI in patients with post-covid chronic fatigue syndrome. Biomed Pharmacother. 2023 Oct 18;168:115723. doi: 10.1016/j.biopha.2023.115723. Epub ahead of print. PMID: 37862966. https://www.sciencedirect.com/science/article/pii/S0753332223015214 (Full study)

People with Long Covid and ME/CFS Exhibit Similarly Impaired Balance and Physical Capacity: A Case-Case-Control Study

Abstract:

Purpose: Postural sway and physical capacity had not previously been compared between people with long COVID and people with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Therefore, this study determined postural sway and physical capacity in people with long COVID (∼16 month illness duration; n=21) and ME/CFS (∼16 year illness duration; n=20), versus age-matched healthy controls (n=20).

Methods: Postural sway was during a 30 s static stand test. Physical capacity was determined using the timed up and go test and five times sit to stand test. Throughout, participants wore isoinertial measurement units.

Results: Postural sway was worse (i.e. greater) in people with long COVID and ME/CFS than controls, but not different between long COVID and ME/CFS. Performance of the timed up and go test and five times sit to stand test were worse in long COVID and ME/CFS than controls, but not different between long COVID and ME/CFS. 87% and 13% of long COVID and ME/CFS participants exceeded the threshold for muscle weakness in the five times sit to stand test and timed up and go test, respectively.

Conclusions: These data suggest that both people with long COVID and people with ME/CFS have similarly impaired balance and physical capacity. Therefore, there is an urgent need for interventions to target postural sway and physical capacity in people with ME/CFS, and given the current pandemic, people with long COVID.

Source: Lawrence D. Hayes, PhD, Nilihan E.M. Sanal-Hayes, PhD, Marie Mclaughlin, PhD, Ethan C.J. Berry, BSc (Hons), Nicholas F. Sculthorpe, PhD. People with Long Covid and ME/CFS Exhibit Similarly Impaired Balance and Physical Capacity: A Case-Case-Control Study. The American Journal of Medicine. Published: July 23, 2023 DOI: https://doi.org/10.1016/j.amjmed.2023.06.028 https://www.amjmed.com/article/S0002-9343(23)00465-5/fulltext#%20

Sonographic Diaphragm Abnormalities are an Unexpectedly Frequent Feature of Long COVID Outpatients with Unexplained Dyspnea and Fatigue

Abstract:

Purpose: The primary aim of this study is to define the sonographic diaphragm phenotype of Long COVID rehabilitation outpatients with non-specific dyspnea and fatigue. We analyzed patients referred from a pulmonary post-COVID clinic that were lacking a specific cardiopulmonary diagnosis for their symptoms. Additionally, we report the functional outcomes of subset of patients who completed an outpatient cardiopulmonary physical therapy program.

Methods: This was a retrospective cohort study (n = 58) of consecutive patients referred for neuromuscular ultrasound assessment of diaphragm muscle using B-mode technique. Patients were recruited from a single academic hospital between February 25, 2021 and November 22, 2022.

Results: Sonographic abnormalities were identified in 57% (33/58) of patients, and in the vast majority of cases (33/33) was defined by a low diaphragm muscle thickness. Thinner diaphragm muscles are correlated with lower serum creatinine and creatine kinase values, but there was no association with markers of systemic inflammation. Thirty three patients participated in outpatient cardiopulmonary physical therapy that included respiratory muscle training, and 75.8% (25/33) had documented improvement.

Conclusion: In the outpatient rehabilitation setting, patients with Long COVID display low diaphragm muscle thickness, but intact muscle contractility, with surprising frequency on neuromuscular ultrasound. We speculate this represents a form of disuse atrophy. Also, these patients appear to have a favorable response to cardiopulmonary physical therapy that includes respiratory muscle training.

Source: Prabhav P. DeoJoseph I. BaileyAlexandra S. JensenEllen FarrMeghan FaheyMatthew IsherwoodKeerthana ChakkaLisa F. WolfeIshan RoyMarc A. SalaColin K. Franz. Sonographic Diaphragm Abnormalities are an Unexpectedly Frequent Feature of Long COVID Outpatients with Unexplained Dyspnea and Fatigue. (Full text)

Sarcopenia as potential biological substrate of long COVID-19 syndrome: prevalence, clinical features, and risk factors

Abstract:

Background: Severe clinical pictures and sequelae of COVID-19 disease are immune mediated and characterized by a ‘cytokine storm’. Skeletal muscle has emerged as a potent regulator of immune system function. The aim of the present study is to define the prevalence of sarcopenia among COVID-19 survivors and the negative impact of sarcopenia on the post-acute COVID-19 syndrome and its related risk factors.

Methods: A total of 541 subjects recovered from COVID-19 disease were enrolled in the Gemelli Against COVID-19 Post-Acute Care between April 2020 and February 2021. They underwent a multidisciplinary clinical evaluation and muscle strength and physical performance assessment.

Results: Mean age was 53.1 years (SD 15.2, range from 18 to 86 years), and 274 (51%) were women. The prevalence of sarcopenia was 19.5%, and it was higher in patients with a longer hospital stay and lower in patients who were more physically active and had higher levels of serum albumin. Patients with sarcopenia had a higher number of persistent symptoms than non-sarcopenic patients (3.8 ± 2.9 vs. 3.2 ± 2.8, respectively; P = 0.06), in particular fatigue, dyspnoea, and joint pain.

Conclusions: Sarcopenia identified according to the EWGSOP2 criteria is high in patients recovered from COVID-19 acute illness, particularly in those who had experienced the worst clinical picture reporting the persistence of fatigue and dyspnoea. Our data suggest that sarcopenia, through the persistence of inflammation, could be the biological substrate of long COVID-19 syndrome. Physical activity, especially if associated with adequate nutrition, seems to be an important protective factor.

Source: Martone AM, Tosato M, Ciciarello F, Galluzzo V, Zazzara MB, Pais C, Savera G, Calvani R, Marzetti E, Robles MC, Ramirez M, Landi F; Gemelli Against COVID-19 Post-Acute Care Team. Sarcopenia as potential biological substrate of long COVID-19 syndrome: prevalence, clinical features, and risk factors. J Cachexia Sarcopenia Muscle. 2022 Jun 14. doi: 10.1002/jcsm.12931. Epub ahead of print. PMID: 35698920. https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12931 (Full text)

Myopathy as a cause of fatigue in long-term post-COVID-19 symptoms: Evidence of skeletal muscle histopathology

Abstract:

Background: Among post-COVID-19 symptoms, fatigue is reported as one of the most common, even after mild acute infection, and as the cause of fatigue, myopathy diagnosed by electromyography has been proposed in previous reports. This study aimed to explore the histopathological changes in patients with post-COVID-19 fatigue.

Methods: Sixteen patients (mean age:46 years) with post-COVID-19 complaints of fatigue, myalgia or weakness persisting for up to 14 months were included. In all patients, quantitative electromyography and muscle biopsies analysed with light and electron microscopy were taken.

Results: Muscle weakness was present in 50%, myopathic electromyography in 75% while in all patients, there were histological changes. Muscle fiber atrophy was found in 38%, and 56% showed indications of fiber regeneration. Mitochondrial changes, comprising loss of COX activity, subsarcollemmal accumulation and/or abnormal cristae, were present in 62%. Inflammation was found in 62%, seen as T-lymphocytes and/or muscle fiber HLA-ABC expression. In 75%, capillaries were affected involving basal lamina and cells. In two patients, uncommon amounts of basal lamina were found, not only surrounding muscle fibers but also around nerves and capillaries.

Conclusions: The wide variety of histological changes in this study suggest that skeletal muscles may be a major target of SARS-CoV-2 causing muscular post-COVID-19 symptoms. The mitochondrial changes, inflammation and capillary injury in muscle biopsies can cause fatigue in part due to reduced energy supply. Since most patients had mild-moderate acute affection, the new variants that might cause less severe acute disease could still have the ability to cause long-term myopathy.

Source: Hejbøl EK, Harbo T, Agergaard J, Madsen LB, Pedersen TH, Østergaard LJ, Andersen H, Schrøder HD, Tankisi H. Myopathy as a cause of fatigue in long-term post-COVID-19 symptoms: Evidence of skeletal muscle histopathology. Eur J Neurol. 2022 Jun 6. doi: 10.1111/ene.15435. Epub ahead of print. PMID: 35661354.  https://pubmed.ncbi.nlm.nih.gov/35661354/ https://pubmed.ncbi.nlm.nih.gov/35661354/ (Full text available as PDF file)

Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19

Abstract:

Background and methods: Skeletal muscle-related symptoms are common in both acute Covid-19 and Post-Acute Sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected, and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy and post-viral fatigue syndrome.
Results: Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fiber atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxemia, and malnutrition. These factors also contribute to post-ICU syndrome and ICU-acquired weakness, and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure and different factors likely contribute. Direct SARS-CoV-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study.
Conclusion: Both SARS-CoV-2 specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid 19 and PASC.
Source: Soares, M., Eggelbusch, M., Naddaf, E., Gerrits, K., van der Schaaf, M., van den Borst, B., Wiersinga, W. J., et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. Journal of Cachexia, Sarcopenia and Muscle. https://doi.org/10.17863/CAM.78509 https://www.repository.cam.ac.uk/handle/1810/331064

Timed loaded standing in female chronic fatigue syndrome compared with other populations

Erratum in

  • J Rehabil Res Dev. 2015;52(7):859.

Abstract:

Patients with chronic fatigue syndrome (CFS), like patients with osteoporosis, have similar difficulties in standing and sitting. The aim of the study was to compare combined trunk and arm endurance among women with CFS (n = 72), women with osteoporosis (n = 30), nondisabled women (n = 55), and women from non-industrialized countries (n = 58) using the timed loaded standing (TLS) test. TLS measures how long a person can hold a 1 kg dumbbell in each hand in front of him or her with straight arms. TLS was higher in the industrialized nondisabled population than in the non-industrialized study population (p < 0.001) and in patients with osteoporosis (p = 0.002).

TLS was lower in patients with CFS than in nondisabled controls (p < 0.001). After adjusting for age, body height, and weight, combined trunk and arm endurance was lower in CFS patients than in osteoporotic patients, even though the patients with osteoporosis were more than 25 yr older (p < 0.001) [corrected]. In CFS, TLS was lower than in the non-industrialized group (p = 0.02). Since only women were studied, external validity of the results is limited to adult female patients with CFS. TLS revealed a specific biomechanical weakness in CFS patients that can be taken into account from the onset of a rehabilitation program. We propose that influencing the quality, rather than the quantity, of movement could be used in the rehabilitation.

 

Source: Eyskens JB, Nijs J, D’Août K, Sand A, Wouters K, Moorkens G. Timed loaded standing in female chronic fatigue syndrome compared with other populations. J Rehabil Res Dev. 2015;52(1):21-9. doi: 10.1682/JRRD.2014.03.0086. http://www.rehab.research.va.gov/jour/2015/521/JRRD-2014-03-0086.html (Full article)

 

Strength and physiological response to exercise in patients with chronic fatigue syndrome

Abstract:

OBJECTIVE: To measure strength, aerobic exercise capacity and efficiency, and functional incapacity in patients with chronic fatigue syndrome(CFS) who do not have a current psychiatric disorder.

METHODS: Sixty six patients with CFS without a current psychiatric disorder, 30 healthy but sedentary controls, and 15 patients with a current major depressive disorder were recruited into the study. Exercise capacity and efficiency were assessed by monitoring peak and submaximal oxygen uptake, heart rate, blood lactate, duration of exercise, and perceived exertion during a treadmill walking test. Strength was measured using twitch interpolated voluntary isometric quadriceps contractions. Symptomatic measures included physical and mental fatigue, mood, sleep, somatic amplification, and functional incapacity.

RESULTS: Compared with sedentary controls, patients with CFS were physically weaker, had a significantly reduced exercise capacity, and perceived greater effort during exercise, but were equally unfit. Compared with depressed controls, patients with CFS had significantly higher submaximal oxygen uptakes during exercise, were weaker, and perceived greater physical fatigue and incapacity. Multiple regression models suggested that exercise incapacity in CFS was related to quadriceps muscle weakness, increased cardiovascular response to exercise, and body mass index. The best model of the increased exercise capacity found after graded exercise therapy consisted of a reduction in submaximal heart rate response to exercise.

CONCLUSIONS: Patients with CFS were weaker than sedentary and depressed controls and as unfit as sedentary controls. Low exercise capacity in patients with CFS was related to quadriceps muscle weakness, low physical fitness, and a high body mass ratio. Improved physical fitness after treatment was associated with increased exercise capacity. These data imply that physical deconditioning helps to maintain physical disability in CFS and that a treatment designed to reverse deconditioning helps to improve physical function.

Comment in: Chronic fatigue syndrome: is it physical? [J Neurol Neurosurg Psychiatry. 2000]

 

Source: Fulcher KY, White PD. Strength and physiological response to exercise in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 2000 Sep;69(3):302-7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1737090/ (Full article)

 

Chronic fatigue syndrome: is it physical?

Comment on: Strength and physiological response to exercise in patients with chronic fatigue syndrome. [J Neurol Neurosurg Psychiatry. 2000]

 

It is increasingly recognised that chronic fatigue syndrome (CFS) is heterogeneous. A significant proportion of patients fulfilling operative criteria for a diagnosis of CFS will also fulfill criteria for a psychiatric disorder, such as depression or somatisation. Failure to recognise this heterogeneity prejudices attempts to understand CFS in cross sectional studies. In this issue (pp 302–307) Fulcher et al report a study of muscle strength, aerobic exercise capacity, and functional incapacity in a group of patients with CFS without concurrent psychiatric disorder, compared with patients with major depression and a group of normal but sedentary subjects.1 In an incremental treadmill exercise test, patients with CFS and depressed patients had lower peak oxygen consumption rates, maximal heart rates, and plasma lactate concentrations than the sedentary controls; but this reflected the shorter duration of exercise tolerated by these patients. At submaximal work rates, patients with CFS and depressed patients experienced greater perception of eVort than sedentary controls at the same level of work. This is in keeping with the finding that such patients show greater sensitivity to bodily sensations than normal subjects. Overall, there was little difference between the patients with CFS and the depressed patients in exercise characteristics, yet the patients with CFS reported significantly greater degrees of physical fatigue and physical incapacity.

You can read the full comment here: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1737076/pdf/v069p00289.pdf

 

Source: Lane R. Chronic fatigue syndrome: is it physical? J Neurol Neurosurg Psychiatry. 2000 Sep;69(3):289. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1737076/