Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007)

Abstract:

Objective: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often experience debilitating fatigue and autonomic dysregulation, yet objective measurements of these symptoms are limited. This study utilized actigraphic data from the United Kingdom Biobank (UKBB) to investigate (1) reduced activity in those with CFS, (2) decreased amplitudes of daily temperature rhythms as a potential indicator of autonomic dysregulation, and (3) the impact of specific single nucleotide polymorphisms (SNPs) associated with CFS on these actigraphic parameters.

Background: ME/CFS is a complex and poorly understood condition characterized by profound fatigue, postural orthostasis, and temperature dysregulation. Objective metrics reflecting these fatigue-related symptoms are scarce. Previous research explored small-scale actigraphic analyses, shedding light on movement and temperature patterns in CFS, but large-scale investigations remain limited. Genetic factors have also emerged as potential contributors to CFS risk, although how they affect phenotypic manifestations remains unclear.

Design/Methods: Actigraphic data from the UKBB were analyzed to compare those with CFS (n = 295) to controls (n = 63,133). Movement parameters, acceleration amplitudes, and temperature amplitudes were assessed. Additionally, the impact of specific SNPs associated with CFS on actigraphic measurements and subjective fatigue experiences was examined.

Results: In addition to profound fatigue, those with CFS exhibited significantly reduced overall movement (Cohen’s d = −0.220, p-value = 2.42 × 10–15), lower acceleration amplitudes (Cohen’s d = −0.377, p-value = 1.74 × 10−6), and decreased temperature amplitudes (Cohen’s d = −0.173, p-value = 0.002) compared to controls. Furthermore, certain SNPs associated with CFS were found to significantly influence both actigraphic measurements and subjective fatigue experiences.

Conclusions: This study provides valuable insights into the objective characterization of CFS using actigraphy, shedding light on the interaction between genetics and symptomatology in CFS. The findings offer avenues for further research into the pathophysiology of CFS and may contribute to a better understanding of fatigue-related conditions in general.

Source: Patrick Liu, David Raizen, Carsten Skarke, Thomas Brooks, and Ron Anafi. Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007). Neurology, April 9, 2024 issue
102 (17_supplement_1) https://doi.org/10.1212/WNL.0000000000204829 https://www.neurology.org/doi/abs/10.1212/WNL.0000000000204829

Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of unexplained severe fatigue

Abstract

Background: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified.

Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient population likely encompasses multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment.

Methods: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences.

Results: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory neurosteroids and impaired progesterone metabolism.

Conclusions: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a specific disease aetiology that may be an underlying cause of complex chronic fatigue and possibly other conditions too. It reveals biomarkers that could be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.

Source: Julia Oakley, Martin Hill, Adam Giess, Mélanie Tanguy, Greg Elgar. Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of unexplained severe fatigue. ResearchSquare [Preprint] https://www.researchsquare.com/article/rs-3218228/v2 (Full text)

Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

OBJECTIVES/GOALS: Strong evidence has implicated oxidative stress (OS) as a disease mechanism in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The study aim was to assess whether a C>T single nucleotide polymorphism (SNP) (rs1800668), which reduces the activity of glutathione peroxidase 1 (GPX1), is associated with brain OS in patients with ME/CFS.

METHODS/STUDY POPULATION: Study population: The study enrolled 20 patients with ME/CFS diagnosed according to Canadian Consensus Criteria, and 11 healthy control (HC) subjects. Genotyping: DNA was extracted from whole blood samples, amplified by PCR, and purified. Sanger sequencing was used for genotyping. 1H MRS: Proton magnetic resonance spectroscopy (1H MRS) was used to measure levels of glutathione (GSH) a primary tissue antioxidant and OS marker in a 3x3x2 cm3 occipital cortex (OCC) voxel. GSH spectra were recorded in 15 minutes with the standard J-editing technique. The resulting GSH peak area was normalized to tissue water level in the voxel. Statistical Analysis: T-tests were used to compare OCC GSH levels between ME/CFS and HC groups, and between the study’s genotype groups (group 1: CC, group 2: combined TC and TT).

RESULTS/ANTICIPATED RESULTS: Clinical characteristics: ME/CFS and HC groups were comparable on age and BMI but not on sex (p = 0.038). Genotype frequencies: Genotype frequencies in the ME/CFS group were 0.55 (CC), 0.25 (TC) and 0.2 (TT); and 0.636 (CC), 0.364 (TC), and 0 (TT) in the HC group. GSH levels: There was a trend-level lower mean OCC GSH in ME/CFS than in HC (0.0015 vs 0.0017; p = 0.076). GSH levels by genotype group interaction: Within the ME/CFS group but not in the combined ME/CFS and HC group or HC group alone, GSH levels were lower in the TC and TT genotypes than in CC genotypes (0.00143 vs 0.00164; p = 0.018).

DISCUSSION/SIGNIFICANCE: This study found that the presence of a C>T SNP in GPX1 is associated with lower mean GSH levels and, hence, brain oxidative stress, in ME/CFS patients. If validated in a larger cohort, this finding may support targeted antioxidant therapy based on their genotype as a potentially effective treatment for patients with ME/CFS.

Source: Hampilos, N., Germain, A., Mao, X., Hanson, M., & Shungu, D. (2023). 474 Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical and Translational Science, 7(S1), 137-138. doi:10.1017/cts.2023.488. DOI: https://doi.org/10.1017/cts.2023.488

Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global crisis. Although many people recover from COVID-19 infection, they are likely to develop persistent symptoms similar to those of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) after discharge. Those constellations of symptoms persist for months after infection, called Long COVID, which may lead to considerable financial burden and healthcare challenges. However, the mechanisms underlying Long COVID and ME/CFS remain unclear.

Methods: We collected the genes associated with Long COVID and ME/CFS in databases by restricted screening conditions and clinical sample datasets with limited filters. The common genes for Long COVID and ME/CFS were finally obtained by taking the intersection. We performed several advanced bioinformatics analyses based on common genes, including gene ontology and pathway enrichment analyses, protein–protein interaction (PPI) analysis, transcription factor (TF)–gene interaction network analysis, transcription factor–miRNA co-regulatory network analysis, and candidate drug analysis prediction.

Results: We found nine common genes between Long COVID and ME/CFS and gained a piece of detailed information on their biological functions and signaling pathways through enrichment analysis. Five hub proteins (IL-6, IL-1B, CD8A, TP53, and CXCL8) were collected by the PPI network. The TF–gene and TF–miRNA coregulatory networks were demonstrated by NetworkAnalyst. In the end, 10 potential chemical compounds were predicted.

Conclusion: This study revealed common gene interaction networks of Long COVID and ME/CFS and predicted potential therapeutic drugs for clinical practice. Our findings help to identify the potential biological mechanism between Long COVID and ME/CFS. However, more laboratory and multicenter evidence is required to explore greater mechanistic insight before clinical application in the future.

Source: Lv Y, Zhang T, Cai J, Huang C, Zhan S and Liu J. Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Immunol. 13:952987  https://www.frontiersin.org/articles/10.3389/fimmu.2022.952987/full (Full text)

Autoimmune Gene Expression Proling of Fingerstick Whole Blood in Chronic Fatigue Syndrome

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions.

The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS.

In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease.

Methods: In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home.

RNA from the fingerstick blood was tested using DxTerity’s 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method.

Results: Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease.

From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to 2 patients with mild to moderate disease conditions.

These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases.

These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA).

Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives).

Conclusions: Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity.

These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.

Source: Zheng Wang, Michelle F. Waldman, Tara J. Basavanhally, Aviva R. Jacobs, et al. Autoimmune Gene Expression Proling of Fingerstick Whole Blood in Chronic Fatigue Syndrome. https://doi.org/10.21203/rs.3.rs-1942047/v1  (Full text)

No replication of previously reported association with genetic variants in the T cell receptor alpha (TRA) locus for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease with a variety of symptoms such as post-exertional malaise, fatigue, and pain, but where aetiology and pathogenesis are unknown. An increasing number of studies have implicated the involvement of the immune system in ME/CFS. Furthermore, a hereditary component is suggested by the reported increased risk for disease in relatives, and genetic association studies are being performed to identify potential risk variants.

We recently reported an association with the immunologically important human leucocyte antigen (HLA) genes HLA-C and HLA-DQB1 in ME/CFS. Furthermore, a genome-wide genetic association study in 42 ME/CFS patients reported significant association signals with two variants in the T cell receptor alpha (TRA) locus (P value <5 × 10-8). As the T cell receptors interact with the HLA molecules, we aimed to replicate the previously reported findings in the TRA locus using a large Norwegian ME/CFS cohort (409 cases and 810 controls) and data from the UK biobank (2105 cases and 4786 controls).

We investigated numerous SNPs in the TRA locus, including the two previously ME/CFS-associated variants, rs11157573 and rs17255510. No associations were observed in the Norwegian cohort, and there was no significant association with the two previously reported SNPs in any of the cohorts. However, other SNPs showed signs of association (P value <0.05) in the UK Biobank cohort and meta-analyses of Norwegian and UK biobank cohorts, but none survived correction for multiple testing. Hence, our research did not identify any reliable associations with variants in the TRA locus.

Source: Ueland M, Hajdarevic R, Mella O, Strand EB, Sosa DD, Saugstad OD, Fluge Ø, Lie BA, Viken MK. No replication of previously reported association with genetic variants in the T cell receptor alpha (TRA) locus for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Transl Psychiatry. 2022 Jul 11;12(1):277. doi: 10.1038/s41398-022-02046-1. PMID: 35821115. https://www.nature.com/articles/s41398-022-02046-1 (Full text)

A distinctive profile of family genetic risk scores in a Swedish national sample of cases of fibromyalgia, irritable bowel syndrome, and chronic fatigue syndrome compared to rheumatoid arthritis and major depression

Abstract:

Background: Functional somatic disorders (FSD) feature medical symptoms of unclear etiology. Attempts to clarify their origin have been hampered by a lack of rigorous research designs. We sought to clarify the etiology of the FSD by examining the genetic risk patterns for FSD and other related disorders.

Methods: This study was performed in 5 829 186 individuals from Swedish national registers. We quantified familial genetic risk for FSD, internalizing disorders, and somatic disorders in cases of chronic fatigue syndrome (CFS), fibromyalgia (FM), and irritable bowel syndrome (IBS), using a novel method based on aggregate risk in first to fifth degree relatives, adjusting for cohabitation. We compared these profiles with those of a prototypic internalizing psychiatric – major depression (MD) – and a somatic/autoimmune disorder: rheumatoid arthritis (RA).

Results: Patients with FM carry substantial genetic risks not only for FM, but also for pain syndromes and internalizing, autoimmune and sleep disorders. The genetic risk profiles for IBS and CFS are also widely distributed although with lower average risks. By contrast, genetic risk profiles of MD and RA are much more restricted to related conditions.

Conclusion: Patients with FM have a relatively unique family genetic risk score profile with elevated genetic risk across a range of disorders that differs markedly from the profiles of a classic autoimmune disorder (RA) and internalizing disorder (MD). A similar less marked pattern of genetic risks was seen for IBS and CFS. FSD arise from a distinctive pattern of genetic liability for a diversity of psychiatric, autoimmune, pain, sleep, and functional somatic disorders.

Source: Kendler KS, Rosmalen JGM, Ohlsson H, Sundquist J, Sundquist K. A distinctive profile of family genetic risk scores in a Swedish national sample of cases of fibromyalgia, irritable bowel syndrome, and chronic fatigue syndrome compared to rheumatoid arthritis and major depression. Psychol Med. 2022 Mar 31:1-8. doi: 10.1017/S0033291722000526. Epub ahead of print. PMID: 35354508.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as “brain fog”. These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient.

In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.

Source: Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med. 2021 Oct 19;10(20):4786. doi: 10.3390/jcm10204786. PMID: 34682909; PMCID: PMC8538807. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538807/ (Full text)

Chronic fatigue syndrome: progress and possibilities

Abstract:

Chronic fatigue syndrome (CFS) is a prevalent condition affecting about one in 100 patients attending primary care. There is no diagnostic test, validated biomarker, clear pathophysiology or curative treatment. The core symptom of fatigue affects both physical and cognitive activities, and features a prolonged post-activity exacerbation triggered by tasks previously achieved without difficulty.

Although several different diagnostic criteria are proposed, for clinical purposes only three elements are required: recognition of the typical fatigue; history and physical examination to exclude other medical or psychiatric conditions which may explain the symptoms; and a restricted set of laboratory investigations. Studies of the underlying pathophysiology clearly implicate a range of different acute infections as a trigger for onset in a significant minority of cases, but no other medical or psychological factor has been reproducibly implicated.

There have been numerous small case-control studies seeking to identify the biological basis of the condition. These studies have largely resolved what the condition is not: ongoing infection, immunological disorder, endocrine disorder, primary sleep disorder, or simply attributable to a psychiatric condition. A growing body of evidence suggests CFS arises from functional (non-structural) changes in the brain, but of uncertain character and location. Further functional neuroimaging studies are needed.

There is clear evidence for a genetic contribution to CFS from family and twin studies, suggesting that a large scale genome-wide association study is warranted. Despite the many unknowns in relation to CFS, there is significant room for improvement in provision of the diagnosis and supportive care. This may be facilitated via clinician education.

Source: Sandler CX, Lloyd AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust. 2020 Apr 5. doi: 10.5694/mja2.50553. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/32248536