Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19

Abstract:

The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role.

We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes.

Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection.

We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms.

We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.

Source: Michael J Peluso, Dylan M Ryder, Robert Flavell, Yingbing Wang, Jelena Levi, Brian H LaFranchi, Tyler-Marie M Deveau, Amanda M Buck, Sadie E Munter, Kofi A Asare, Maya Aslam, Walter Koch, Gyula Szabo, Rebecca Hoh, Monika Deswal, Antonio Rodriguez, Melissa Buitrago, Viva Tai, Uttam Shrestha, Scott Lu, Sarah A Goldberg, Thomas Dalhuisen, Matthew S Durstenfeld, Priscilla Y Hsue, J D Kelly, Nitasha Kumar, Jeffrey N Martin, Aruna Gambhir, Ma Somsouk, Youngho Seo, Steven G Deeks, Zoltan G Laszik, Henry F VanBrocklin, Timothy J Henrich. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19. medRxiv 2023.07.27.23293177; doi: https://doi.org/10.1101/2023.07.27.23293177 https://www.medrxiv.org/content/10.1101/2023.07.27.23293177v1.full.pdf+html (Full text available as PDF file)

Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells

Abstract:

There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation.

We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol.

The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls.

Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.

 

Source: Mihaylova I, DeRuyter M, Rummens JL, Bosmans E, Maes M. Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells. Neuro Endocrinol Lett. 2007 Aug;28(4):477-83. https://www.ncbi.nlm.nih.gov/pubmed/17693977

 

In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation

Abstract:

There is now evidence that major depression is accompanied by decreased levels of omega3 poly-unsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). There is a strong comorbidity between major depression and chronic fatigue syndrome (CFS). The present study has been carried out in order to examine PUFA levels in CFS.

In twenty-two CFS patients and 12 normal controls we measured serum PUFA levels using gas chromatography and mass spectrometry. We found that CFS was accompanied by increased levels of omega6 PUFAs, i.e. linoleic acid and arachidonic acid (AA), and mono-unsaturated fatty acids (MUFAs), i.e. oleic acid. The EPA/AA and total omega3/omega6 ratios were significantly lower in CFS patients than in normal controls. The omega3/omega6 ratio was significantly and negatively correlated to the severity of illness and some items of the FibroFatigue scale, i.e. aches and pain, fatigue and failing memory.

The severity of illness was significantly and positively correlated to linoleic and arachidonic acid, oleic acid, omega9 fatty acids and one of the saturated fatty acids, i.e. palmitic acid. In CFS subjects, we found significant positive correlations between the omega3/omega6 ratio and lowered serum zinc levels and the lowered mitogen-stimulated CD69 expression on CD3+, CD3+ CD4+, and CD3+ CD8+ T cells, which indicate defects in early T cell activation. The results of this study show that a decreased availability of omega3 PUFAs plays a role in the pathophysiology of CFS and is related to the immune pathophysiology of CFS.

The results suggest that patients with CFS should respond favourably to treatment with–amongst other things–omega3 PUFAs, such as EPA and DHA.

 

Source: Maes M, Mihaylova I, Leunis JC. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuro Endocrinol Lett. 2005 Dec;26(6):745-51. http://www.ncbi.nlm.nih.gov/pubmed/16380690

 

Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is a multisystem disease, the pathogenesis of which remains undetermined.

AIMS: To test the hypothesis that there are reproducible abnormalities of gene expression in patients with CFS compared with normal healthy persons.

METHODS: To gain further insight into the pathogenesis of this disease, gene expression was analysed in peripheral blood mononuclear cells from 25 patients with CFS diagnosed according to the Centers for Disease Control criteria and 25 normal blood donors matched for age, sex, and geographical location, using a single colour microarray representing 9522 human genes. After normalisation, average difference values for each gene were compared between test and control groups using a cutoff fold difference of expression > or = 1.5 and a p value of 0.001. Genes showing differential expression were further analysed using Taqman real time polymerase chain reaction (PCR) in fresh samples.

RESULTS: Analysis of microarray data revealed differential expression of 35 genes. Real time PCR confirmed differential expression in the same direction as array results for 16 of these genes, 15 of which were upregulated (ABCD4, PRKCL1, MRPL23, CD2BP2, GSN, NTE, POLR2G, PEX16, EIF2B4, EIF4G1, ANAPC11, PDCD2, KHSRP, BRMS1, and GABARAPL1) and one of which was downregulated (IL-10RA). This profile suggests T cell activation and perturbation of neuronal and mitochondrial function. Upregulation of neuropathy target esterase and eukaryotic translation initiation factor 4G1 may suggest links with organophosphate exposure and virus infection, respectively.

CONCLUSION: These results suggest that patients with CFS have reproducible alterations in gene regulation.

 

Source: Kaushik N, Fear D, Richards SC, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DA, Holgate ST, Kerr JR. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol. 2005 Aug;58(8):826-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1770875/ (Full article)

 

Delayed-type hypersensitivity and chronic fatigue syndrome: the usefulness of assessing T-cell activation by flow cytometry–preliminary study

Abstract:

Chronic fatigue syndrome or benign myalgic encephalomyelitis has been extensively described and investigated. Although numerous immunological abnormalities have been linked with the syndrome, none have been found to be specific.

This article describes the detection of delayed-type hypersensitive responses to certain common environmental antigens in almost fifty per cent of patients with this syndrome. Such hypersensitivity can be detected by the intradermal administration of antigens derived from commensal organisms like the yeast Candida albicans albicans, and then monitoring for a systemic reaction over the following six to forty-eight hours.

This approach can be consolidated by performing lymphocyte activation tests in parallel and measuring in vitro T-cell activation by Candida albicans albicans antigens by three-colour flow cytometry based on CD3, CD4 and either CD69 or CD25. Another useful parameter is the kinetics of neopterin excretion in the urine over the course of the skin test. The results showed that the intensity of the DTH response correlated with the number of T-cells activated in vitro.

Various factors have been implicated in the fatigue of many patients, notably lack of sleep. However, it remains difficult to establish causality in either one direction or the other. This work is in the spirit of a multifactorial approach to the group of conditions referred to as “chronic fatigue syndrome”.

 

Source: Brunet JL, Liaudet AP, Later R, Peyramond D, Cozon GJ. Delayed-type hypersensitivity and chronic fatigue syndrome: the usefulness of assessing T-cell activation by flow cytometry–preliminary study. Allerg Immunol (Paris). 2001 Apr;33(4):166-72. http://www.ncbi.nlm.nih.gov/pubmed/11434196