Altered mitochondrial respiration in peripheral blood mononuclear cells of post-acute sequelae of SARS-CoV-2 infection

Abstract:

Peripheral blood mononuclear cells (PBMC) mitochondrial respiration was measured ex vivo from participants without a history of COVID (n = 19), with a history of COVID and full recovery (n = 20), and with PASC (n = 20). Mean mitochondrial basal respiration, ATP-linked respiration, maximal respiration, spare respiration capacity, ATP-linked respiration, and non-mitochondrial respiration were highest in COVID + PASC+ (p ≤ 0.04). Every unit increase in non-mitochondrial respiration, ATP-linked respiration, basal respiration, spare respiration capacity, and maximal respiration increased the predicted odds of PASC between 1 % and 6 %. Mitochondrial dysfunction in PBMCs may be contributing to the etiology of PASC.

Source: Dirajlal-Fargo S, Maison DP, Durieux JC, Andrukhiv A, Funderburg N, Ailstock K, Gerschenson M, Mccomsey GA. Altered mitochondrial respiration in peripheral blood mononuclear cells of post-acute sequelae of SARS-CoV-2 infection. Mitochondrion. 2024 Feb 8:101849. doi: 10.1016/j.mito.2024.101849. Epub ahead of print. PMID: 38341012. https://www.sciencedirect.com/science/article/pii/S1567724924000072 (Full text)

SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC)

Abstract:

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a ‘reservoir’. This reservoir could modulate host immune responses or release viral proteins into the circulation.

Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.

Source: Proal AD, VanElzakker MB, Aleman S, Bach K, Boribong BP, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Eimer W, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Iwasaki A, Izquierdo-Garcia D, Locci M, Mehandru S, Painter MM, Peluso MJ, Pretorius E, Price DA, Putrino D, Scheuermann RH, Tan GS, Tanzi RE, VanBrocklin HF, Yonker LM, Wherry EJ. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol. 2023 Sep 4. doi: 10.1038/s41590-023-01601-2. Epub ahead of print. PMID: 37667052. https://www.nature.com/articles/s41590-023-01601-2 (Full text)

Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity

Abstract:

Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response.

Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison.

During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314).

Source: Altmann DM, Reynolds CJ, Joy G, Otter AD, Gibbons JM, Pade C, Swadling L, Maini MK, Brooks T, Semper A, McKnight Á, Noursadeghi M, Manisty C, Treibel TA, Moon JC; COVIDsortium investigators; Boyton RJ. Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity. Nat Commun. 2023 Aug 23;14(1):5139. doi: 10.1038/s41467-023-40460-1. PMID: 37612310; PMCID: PMC10447583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447583/ (Full text)

L-Arginine in Restoring ‘Immune Dysregulation’ in Long COVID: It’s the Therapeutic Role Beyond the Routine Dietary Supplement!

Abstract:

COVID-19 pandemic is over now and we are in great peace of relief after three years. This pandemic has observed significant impact on quality of life globally and the put unforgettable imprints on history of mankind. Reason for more havoc in this pandemic was less studied virus by medical scientists regarding its pathophysiology, available treatment options and lack of effective vaccine to tackle this dragon. COVID-19 is the first observed and reported pandemic of corona virus related global disease apart from its previous SARS and MERS. Fast track developments in medical treatment options due to this ultrafast digital and artificial intelligence techniques have curtailed mortality on large scale globally.
Although mortality is significantly reduced, morbidity is documented on a large scale worldwide in this pandemic. Morbidity due to COVID-19 now called as ‘Long COVID’, which is underreported & half-heartedly evaluated globally. Long COVID is related to persistent immune dysregulation occurs during evolution of COVID-19 as natural trend of disease.
Immune dysregulation has documented during course of active viremia, during recovery of viral illness and after post viral phase. Immune dysregulation occurs in ‘selected group’ of cases irrespective of disease severity and vaccination status and observed in cases with negligible illness to advanced one mandates further research. Thus, Immune dysregulation in COVID-19 is predominant cause for long covid and leading to brainstorming effect on medical scientists and researchers as of today.
Globally, one third of recovered or affected cases of COVID-19 are facing long covid and needs prompt treatment options to tackle this dragon related long term effect on body. ‘Immunomodulatory’ or immunity modifying agents are the primary targets to curtail immune dysregulation and long covid. Some experts recommend ‘disease modifying agents’ to treat long covid cases. Still, many miles to go to reach to effective treatment options for long covid and we don’t have effective options for this ‘health issue of global concern’.
L-Arginine is amino acid with multiple beneficial effects such as immunomodulatory effects which will regulates immunological response in inhibit dysregulated immune system additional to its universally known antioxidant, vasodilatory and regenerative and cellular proliferation effects on immune cells. These Immunomodulatory and or diseases modifying effects of L-Arginine makes it the future candidate with ‘game changer’ role for management of Long covid resulting from immune dysregulation as a core pathophysiologic pathway of this Dragon Pandemic.
Source: Patil, Dr Shital, Patil, Swati, Gondhali, Gajanan. L-Arginine in Restoring ‘Immune Dysregulation’ in Long COVID: It’s the Therapeutic Role Beyond the Routine Dietary Supplement!  South Asian Journal of Life Sciences, 5(4):60-74. https://www.researchgate.net/publication/373217918_L-Arginine_in_Restoring_%27Immune_Dysregulation%27_in_Long_COVID_It%27s_the_Therapeutic_Role_Beyond_the_Routine_Dietary_Supplement (Full text)

Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19

Abstract:

The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role.

We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes.

Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection.

We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms.

We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.

Source: Michael J Peluso, Dylan M Ryder, Robert Flavell, Yingbing Wang, Jelena Levi, Brian H LaFranchi, Tyler-Marie M Deveau, Amanda M Buck, Sadie E Munter, Kofi A Asare, Maya Aslam, Walter Koch, Gyula Szabo, Rebecca Hoh, Monika Deswal, Antonio Rodriguez, Melissa Buitrago, Viva Tai, Uttam Shrestha, Scott Lu, Sarah A Goldberg, Thomas Dalhuisen, Matthew S Durstenfeld, Priscilla Y Hsue, J D Kelly, Nitasha Kumar, Jeffrey N Martin, Aruna Gambhir, Ma Somsouk, Youngho Seo, Steven G Deeks, Zoltan G Laszik, Henry F VanBrocklin, Timothy J Henrich. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19. medRxiv 2023.07.27.23293177; doi: https://doi.org/10.1101/2023.07.27.23293177 https://www.medrxiv.org/content/10.1101/2023.07.27.23293177v1.full.pdf+html (Full text available as PDF file)

Long COVID, linking etiopathogenic theories

Abstract:

In this letter we discuss the various theories involved in the pathogenesis of Long COVID and how they are closely interrelated, conditioning the full range of symptoms and signs presented by patients affected by this condition, as well as calling for the recognition of the disease by the health authorities that must begin to streamline their health processes to limit the burden of this disease, which tends to be chronic and degenerative.

Source: Luis del Carpio-Orantes, Andrés Aguilar-Silva. Long COVID, linking etiopathogenic theories. Qeios, CC-BY 4.0. https://www.qeios.com/read/A7TYBN (Full text)

The immunology of long COVID

Abstract:

Long COVID is the patient-coined term for the disease entity whereby persistent symptoms ensue in a significant proportion of those who have had COVID-19, whether asymptomatic, mild or severe. Estimated numbers vary but the assumption is that, of all those who had COVID-19 globally, at least 10% have long COVID. The disease burden spans from mild symptoms to profound disability, the scale making this a huge, new health-care challenge.

Long COVID will likely be stratified into several more or less discrete entities with potentially distinct pathogenic pathways. The evolving symptom list is extensive, multi-organ, multisystem and relapsing–remitting, including fatigue, breathlessness, neurocognitive effects and dysautonomia. A range of radiological abnormalities in the olfactory bulb, brain, heart, lung and other sites have been observed in individuals with long COVID. Some body sites indicate the presence of microclots; these and other blood markers of hypercoagulation implicate a likely role of endothelial activation and clotting abnormalities.

Diverse auto-antibody (AAB) specificities have been found, as yet without a clear consensus or correlation with symptom clusters. There is support for a role of persistent SARS-CoV-2 reservoirs and/or an effect of Epstein–Barr virus reactivation, and evidence from immune subset changes for broad immune perturbation. Thus, the current picture is one of convergence towards a map of an immunopathogenic aetiology of long COVID, though as yet with insufficient data for a mechanistic synthesis or to fully inform therapeutic pathways.

Source: Altmann, D.M., Whettlock, E.M., Liu, S. et al. The immunology of long COVID. Nat Rev Immunol (2023). https://doi.org/10.1038/s41577-023-00904-7 https://www.nature.com/articles/s41577-023-00904-7 (Full text)

Divergent Adaptive Immune Responses Define Two Types Of Long Covid

The role of adaptive immune responses in long COVID remains poorly understood, with contrasting hypotheses suggesting either an insufficient antiviral response or an excessive immune response associated with inflammatory damage. To address this issue, we set to characterize humoral and CD4+ T cell responses in long COVID patients prior to SARS-CoV-2 vaccination.

Long COVID patients who were seropositive (LC+, n=28) or seronegative (LC-, n=23) by spike ELISA assay were recruited based on (i) an initial SARS-CoV-2 infection documented by PCR or the conjunction of three major signs of COVID-19 and (ii) the persistence or resurgence of at least 3 symptoms for over 3 months. They were compared to COVID patients with resolved symptoms (RE, n=29) and uninfected control individuals (HD, n=29).

The spectrum of persistent symptoms proved similar in both long COVID groups, with a trend for a higher number of symptoms in the seronegative group (median=6 vs 4.5; P=0.01). The use a highly sensitive S-flow assay enabled the detection of low levels of SARS-CoV-2 spike-specific IgG in 22.7% of ELISA-seronegative long COVID (LC-) patients. In contrast, spike-specific IgG levels were uniformly high in the LC+ and RE groups.

Multiplexed antibody analyses to 30 different viral antigens showed that LC-patients had defective antibody responses to all SARS-CoV-2 proteins tested but had in most cases preserved responses to other viruses. A sensitive primary T cell line assay revealed low but detectable SARS-CoV-2-specific CD4 responses in 39.1% of LC-patients, while response frequencies were high in the LC+ and RE groups. Correlation analyses showed overall strong associations between humoral and cellular responses, with exceptions in the LC-group.

These findings provide evidence for two major types of antiviral immune responses in long COVID. Seropositive patients showed coordinated cellular and humoral responses at least as high as those of recovered patients. In contrast, ELISA-seronegative long COVID patients showed overall low antiviral responses, with detectable specific CD4+ T cells and/or antibodies in close to half of patients (52.2%). These divergent findings in patients sharing a comparable spectrum of persistent symptoms raise the possibility of multiple etiologies in long COVID.

Source: Jérôme Kervevan, Isabelle Staropoli, Dorsaf Slama, Raphaël Jeger-Madiot, Françoise Donnadieu, Delphine Planas, Marie-Pierre Pietri, Wiem Loghmari-Bouchneb, Motolete A. Tanah, Rémy Robinot, Faroudy Boufassa, Michael White, Dominique SALMON and Lisa A. Chakrabarti. Front. Immunol. Sec. Viral Immunology. Volume 14 – 2023 | doi: 10.3389/fimmu.2023.1221961 https://www.frontiersin.org/articles/10.3389/fimmu.2023.1221961/abstract

Etiopathogenic theories about long COVID

Abstract:

The main etiopathogenic theories of long coronavirus disease (COVID) are listed and a conjunction of them is carried out with the objective of deciphering the pathophysiology of the entity, finally the main lines of treatment existing in real life are discussed (Paxlovid, use of antibiotics in dysbiosis, triple anticoagulant therapy, temelimab).

Source: Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol. 2023 Jun 25;12(3):204-208. doi: 10.5501/wjv.v12.i3.204. PMID: 37396704; PMCID: PMC10311581. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311581/ (Full text)

The association between the number of symptoms and the severity of Post-COVID-Fatigue after SARS-CoV-2 infection treated in an outpatient setting

Abstract:

Background: Post-COVID-Fatigue (PCF) is one of the most reported symptoms following SARS-CoV-2 infection. Currently, research on persistent symptoms focuses mainly on severe infections, while outpatients are rarely included in observations.

Objective: To investigate whether the severity of PCF is related to the number of acute and persistent symptoms due to mild-to-moderate COVID-19 and to compare the most common symptoms during acute infection with the persistent symptoms in PCF patients.

Methods: A total of 425 participants were examined after COVID-19 treated as an outpatient (median 249 days [IQR: 135; 322] after acute disease) at the site of University Hospital Augsburg, Germany. The Fatigue Assessment Scale (FAS) was used to quantify the severity of PCF. The number of symptoms (maximum 41) during acute infection and persistent symptoms (during the last 14 days before examination) were added up to sum scores. Multivariable linear regression models were used to show the association between the number of symptoms and PCF.

Results: Of the 425 participants, 37% (n = 157) developed PCF; most were women (70%). The median number of symptoms was significantly higher in the PCF group than in the non-PCF group at both time points. In multivariable linear regression models, both sum scores were associated with PCF (acute symptoms: β-estimate per additional symptom [95%-CI]: 0.48 [0.39; 0.57], p < 0.0001); persistent symptoms: β-estimate per additional symptom [95%-CI]: 1.18 [1.02; 1.34], p < 0.0001). The acute symptoms strongest associated with PCF severity were difficulty concentrating, memory problems, dyspnea or shortness of breath on exertion, palpitations, and problems with movement coordination.

Conclusion: Each additional symptom that occurs in COVID-19 increases the likelihood of suffering a higher severity of PCF. Further research is needed to identify the aetiology of PCF.

Source: Schmidbauer L, Kirchberger I, Goßlau Y, Warm TD, Hyhlik-Dürr A, Linseisen J, Meisinger C. The association between the number of symptoms and the severity of Post-COVID-Fatigue after SARS-CoV-2 infection treated in an outpatient setting. J Neurol. 2023 May 23:1–9. doi: 10.1007/s00415-023-11752-9. Epub ahead of print. PMID: 37219607; PMCID: PMC10204671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204671/ (Full text)