Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition

Abstract:

The recent pandemic has energized research spotlighting chronic fatigue disorders. The similarities between Long COVID (LC) and Chronic Fatigue Syndrome (CFS), often accompanied by postural orthostatic tachycardia syndrome (POTS) are striking.

Furthermore, the majority afflicted with LC and CFS may be those with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, present in the majority of Americans and characterized by hypomethylation. Elevated homocysteine (Hcy) and depressed B9 and B12 may be links. Speculation about an association between these laboratory analytes and MTHFR abnormalities has been previously reported (Regland et al., 2015).

The absence of a blood-brain barrier (BBB) in CNS circumventricular organs (CVOs) that control autonomic and neuroendocrine functions, problematic in LC, CFS, POTS, and MTHFR, is provocative. Diffusion of CNS Hcy is associated with brain fog, cognitive impairment, and dementia. This provides a distinct link between MTHFR variants and the fog of LC, CFS, and POTS.

Small intestine bacterial overgrowth (SIBO), present in about 17% of Americans, is linked to POTS, mast cell activation syndrome (MCAS), and Ehlers Danlos syndrome (EDS). All exhibit histamine intolerance and female predominance. This may be due to hypomethylation and/or intestinal diamine oxidase (DAO) deficiency.

Metabolism of monoamines and histamine requires methylation. Specific CNS nuclei in CVOs may also provide insight to the POTS paradox. The similar gut microbiomes of LC/CFS (and vitamin D deficiency) may via CVOs trigger an imbalance in glutamate/GABA neurotransmission that translates to neuroendocrine and baroreflex dysfunction. Homozygosity for the MTHFR 677T allele can facilitate hypermethylation via an alternative “rescue” riboflavin pathway triggered by significant Hcy increase.

Hypermethylation predominates in Long Covid. The primary problem in these syndromes is compromised mitochondrial function due to oxidative stress induced by an antioxidant shortfall.

Victims are also frequently deficient in 25(OH)D3 (the storage form of vitamin D), magnesium, and B vitamins, consumed by the persistent chronic inflammatory state. Estrogen increases histamine, norepinephrine, and bradykinin (BKN), which may in part explain the brain fog and its predilection for females.

Source: Patrick W Chambers. Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition. Journal of Orthomolecular Medicine. 38. https://www.researchgate.net/publication/373073968_Long_Covid_POTS_CFS_and_MTHFR_Linked_by_Biochemistry_and_Nutrition#fullTextFileContent (Full text)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators?

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is often associated with various other syndromes or conditions including mast cell activation (MCA), dysmenorrhea and endometriosis, postural tachycardia (POTS) and small fiber neuropathy (SFN). The causes of these syndromes and the reason for their frequent association are not yet fully understood.

We previously published a comprehensive hypothesis of the ME/CFS pathophysiology that explains the majority of symptoms, findings and chronicity of the disease. We wondered whether some of the identified key pathomechanisms in ME/CFS are also operative in MCA, endometriosis and dysmenorrhea, POTS, decreased cerebral blood flow and SFN, and possibly may provide clues on their causes and frequent co-occurrence.

Our analysis indeed provides strong arguments in favor of this assumption, and we conclude that the main pathomechanisms responsible for this association are excessive generation and spillover into the systemic circulation of inflammatory and vasoactive tissue mediators, dysfunctional β2AdR, and the mutual triggering of symptomatology and disease initiation. Overall, vascular dysfunction appears to be a strong common denominator in these linkages.

Source: Wirth KJ, Löhn M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators? Medicina. 2023; 59(5):978. https://doi.org/10.3390/medicina59050978  https://www.mdpi.com/1648-9144/59/5/978 (Full text)

Mast cell activation syndrome and the link with long COVID

Abstract:

Mast cells are innate immune cells found in connective tissues throughout the body, most prevalent at tissue-environment interfaces. They possess multiple cell-surface receptors which react to various stimuli and, after activation, release many mediators including histamine, heparin, cytokines, prostaglandins, leukotrienes and proteases.

In mast cell activation syndrome, excessive amounts of inflammatory mediators are released in response to triggers such as foods, fragrances, stress, exercise, medications or temperature changes. Diagnostic markers may be difficult to assess because of their rapid degradation; these include urinary N-methyl histamine, urinary prostaglandins D2, DM and F and serum tryptase (which is stable) in the UK. Self-management techniques, medications and avoiding triggers may improve quality of life. Treatments include mast cell mediator blockers, mast cell stabilisers and anti-inflammatory agents. ‘Long COVID’ describes post-COVID-19 syndrome when symptoms persist for more than 12 weeks after initial infection with no alternative diagnosis.

Both mast cell activation syndrome and long COVID cause multiple symptoms. It is theorised that COVID-19 infection could lead to exaggeration of existing undiagnosed mast cell activation syndrome, or could activate normal mast cells owing to the persistence of viral particles. Other similarities include the relapse-remission cycle and improvements with similar treatments. Importantly, however, aside from mast cell disorders, long COVID could potentially be attributed to several other conditions.

Source: Arun S, Storan A, Myers B. Mast cell activation syndrome and the link with long COVID. Br J Hosp Med (Lond). 2022 Jul 2;83(7):1-10. doi: 10.12968/hmed.2022.0123. Epub 2022 Jul 26. PMID: 35938771. https://pubmed.ncbi.nlm.nih.gov/35938771/

Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice

Abstract:

The gut microbiota has been implicated in chronic pain disorders, including irritable bowel syndrome (IBS), yet specific pathophysiological mechanisms remain unclear. We showed that decreasing intake of fermentable carbohydrates improved abdominal pain in patients with IBS, and this was accompanied by changes in the gut microbiota and decreased urinary histamine concentrations.

Here, we used germ-free mice colonized with fecal microbiota from patients with IBS to investigate the role of gut bacteria and the neuroactive mediator histamine in visceral hypersensitivity. Germ-free mice colonized with the fecal microbiota of patients with IBS who had high but not low urinary histamine developed visceral hyperalgesia and mast cell activation. When these mice were fed a diet with reduced fermentable carbohydrates, the animals showed a decrease in visceral hypersensitivity and mast cell accumulation in the colon. We observed that the fecal microbiota from patients with IBS with high but not low urinary histamine produced large amounts of histamine in vitro.

We identified Klebsiella aerogenes, carrying a histidine decarboxylase gene variant, as a major producer of this histamine. This bacterial strain was highly abundant in the fecal microbiota of three independent cohorts of patients with IBS compared with healthy individuals. Pharmacological blockade of the histamine 4 receptor in vivo inhibited visceral hypersensitivity and decreased mast cell accumulation in the colon of germ-free mice colonized with the high histamine-producing IBS fecal microbiota. These results suggest that therapeutic strategies directed against bacterial histamine could help treat visceral hyperalgesia in a subset of patients with IBS with chronic abdominal pain.

Source: De Palma G, Shimbori C, Reed DE, Yu Y, Rabbia V, Lu J, Jimenez-Vargas N, Sessenwein J, Lopez-Lopez C, Pigrau M, Jaramillo-Polanco J, Zhang Y, Baerg L, Manzar A, Pujo J, Bai X, Pinto-Sanchez MI, Caminero A, Madsen K, Surette MG, Beyak M, Lomax AE, Verdu EF, Collins SM, Vanner SJ, Bercik P. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci Transl Med. 2022 Jul 27;14(655):eabj1895. doi: 10.1126/scitranslmed.abj1895. Epub 2022 Jul 27. PMID: 35895832. https://pubmed.ncbi.nlm.nih.gov/35895832/

Histamine-producing gut bacteria can trigger chronic abdominal pain

Press Release: Hamilton, ON (July 27, 2022) – Researchers from McMaster University and Queen’s University have discovered a gut bacterial ‘super-producer’ of histamine that can cause pain flare-ups in some patients with irritable bowel syndrome (IBS).

The culprit is what has now been named Klebsiella aerogenes, the McMaster-Queen (MQ) strain, identified in up to 25 per cent of gut microbiota samples from patients with IBS. Researchers examined stool microbiota samples from both Canadian and American patient cohorts.

“We followed up these patients for several months and found high levels of stool histamine at the time when the patients reported severe pain, and low stool histamine when they were pain-free,” said senior author Premysl Bercik, professor of medicine of McMaster’s Michael G. DeGroote School of Medicine and a gastroenterologist.

The McMaster-Queen’s research team pinpointed the bacterium Klebsiella aerogenes as the key histamine producer by studying germ-free mice colonized with gut microbiota from patients with IBS. They also colonized some mice with gut microbiota from healthy volunteers as a control group.

The study found that the bacterium Klebsiella aerogenes converts dietary histidine, an essential amino acid present in animal and plant protein, into histamine, a known mediator of pain.

The bacterial histamine then activates the gut immune system through histamine-4 receptor, which draws immune mast cells into the intestines. These activated mast cells produce even more histamine and other pain-signalling mediators, triggering inflammation and pain.

“Now that we know how the histamine is produced in the gut, we can identify and develop therapies that target the histamine producing bacteria,” said first author Giada de Palma, assistant professor of medicine at McMaster.

The study found that when the mice colonized with histamine producing bacteria were fed a diet low in fermentable carbohydrates, bacterial histamine production dramatically decreased. This was due to change in bacterial fermentation and acidity within the gut, which inhibited the bacterial enzyme responsible for histamine production.

Bercik said that these results explain the beneficial effects of a low fermentable diet observed in patients with IBS.

It is known that patients with IBS have more mast cells in their intestines, and that some of them improve with treatments targeting mast cells or histamine, such as mast cell stabilizers or antihistamines.

“Although mast cell treatment in IBS has been explored, a novel approach based on our research would be targeting the bacterial histamine production or H4R pathways,” Bercik said.

The McMaster-Queen’s study explains why increased mast cells are found in IBS and suggests that H4 receptor pathway plays a major role in this process.

“If we block the H4 receptors, then we can prevent recruitment of mast cells to the colon and subsequently the development of abdominal pain,” said senior co-author Stephen Vanner, professor of medicine at Queen’s University.

“Many but not all IBS patients will benefit from therapies targeting this histamine driven pathway,” said co-first author David Reed, assistant professor of medicine at Queen’s. Reed said that one or more biomarkers of this pathway could be used to find the patients most likely to benefit.

The McMaster-Queens study was funded by the Canadian Institutes of Health Research.

The study was published in the journal Science Translational Medicine on July 27.

Click HERE to read the study.

 

Chronic fatigue syndrome: influence of histamine, hormones and electrolytes

Abstract:

The chronic fatigue syndrome is poorly understood. We believe the underlying causes in many atopics and women are a persistent infection and hypersensitivity to the immune-suppressive effects of histamine and certain pathogens.

We believe much of the symptomatology can be explained by all four types of hypersensitivity (Gell and Coombs classification) in reaction to a pathogen, electrolyte disturbances which include sometimes permanent changes in cell membranes’ ability to pass electrolytes, sometimes permanent biochemical changes in mitochondrial function, and disturbances of insulin and T3-thyroid hormone functions. We also explain in detail what ‘fatigue’ means for these patients. We present evidence from the medical literature for the plausibility of our hypotheses.

 

Source: Dechene L. Chronic fatigue syndrome: influence of histamine, hormones and electrolytes. Med Hypotheses. 1993 Jan;40(1):55-60. http://www.ncbi.nlm.nih.gov/pubmed/8455468