Increased insulin resistance due to Long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection

Abstract:

Background: Some months after the remission of acute COVID-19, some individuals show depressive symptoms, which are predicted by increased peak body temperature (PBT) and decreased blood oxygen saturation (SpO2). No data indicate whether Long COVID is associated with increased insulin resistance (IR) in association with neuroimmune and oxidative (NIO) processes.

Methods: This case control and retrospective cohort study used the homeostasis Model Assessment 2 (HOMA2) calculator© to compute β-cell function, insulin sensitivity and resistance (HOMA2-IR) and measured the Beck Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HAMD) in 86 Long COVID patients and 39 controls.

Results: Long COVID (3-4 months after the acute infection) is accompanied by increased HOMA2-IR, fasting blood glucose, and insulin levels; 33.7% of the patients versus 0% of the controls had HOMA2-IR values >1.8, suggesting IR. Increased IR was predicted by PBT during acute infection, and associated with depressive symptoms above and beyond the effects of NIO pathways (NLRP3 inflamasome, myeloperoxidase, protein oxidation). There were no significant associations between increased IR and the activated NIO pathways during Long COVID.

Conclusion: Long COVID is associated with new-onset IR which may contribute to the onset of depressive symptoms due to Long COVID by enhancing overall neurotoxicity.

Source: Al-Hakeim HK, Al-Rubaye HT, Jubran AS, Almulla AF, Moustafa SR, Maes M. Increased insulin resistance due to Long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection. Braz J Psychiatry. 2023 Mar 14. doi: 10.47626/1516-4446-2022-3002. Epub ahead of print. PMID: 36917827. https://pubmed.ncbi.nlm.nih.gov/36917827/ 

The Role of Leptin and Inflammatory Related Biomarkers in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Purpose: Leptin is a member of the cytokine family; its receptor (LEPR-b) is the longest form receptor expressed in cells of the immune system; wherein LEPR-b deficiency causes a decrease in CD4+ cells. LEPR-b is located in hypothalamic and brain stem nuclei, and it primarily regulates energy status. As well, leptin indirectly regulates widespread pain and exercise tolerance by decreasing circulating cortisol.

Hyperinsulinemia increases leptin production in adipocytes on a diurnal rhythm; however, the precise relationship between insulin, leptin and pro-inflammatory markers remains uncertain. In clinical settings, high-sensitivity C-reactive protein (hsCRP) has been widely used, as an inflammatory predictor for leptin-related cardiometabolic outcomes and chronic inflammatory symptoms.

Leptin-related metabolic and inflammation dysregulations have been clinically reported in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but not fully elucidated. We examined the association of plasma insulin, leptin, and hsCRP levels with ME/CFS self-reported symptom severity.

Methods: Prospective analyses were conducted on ME/CFS patients who met Fukuda/CDC criteria at Birmingham hospital, Alabama, U.S.A. The independent variables were hyperinsulinemia (>174 μIU/mL), hyperleptinemia/hypoleptinemia (>18.3/<3.3 ng/mL), residual inflammation risk (hsCRP ≥2 and ≠26.2 mg/L) and within-individual-variability (WIV) for each biomarker.

WIV was defined for each individual as standard deviation/sample residuals adjusting for time and calculated from once-daily random plasma samples over 10–12 weeks.

The primary outcomes were:

(1) ME/CFS symptom score trends [generalized pain, persistent fatigue, sleep disturbance, impairment of concentration and memory (brain fog), and post-exertional malaise (PEM)] calculated from the MFI-20 questionnaire with anchors from 0 to 100 and recorded once daily over a matching 12–14 weeks, and

(2) dichotomized symptom severity, with severe symptoms defined as scores > 60/100. After adjusting for age and time, we reported: (1) standard errors (SEM) and p-values for symptom trends using multivariable mixed-effect linear regression models, and (2) odds ratios for severe symptoms using multivariable alternating logistic regression models.

Results: We included 29 ME/CFS patients. All were females and >18 years old. Hyperinsulinemia, hyperleptinemia/hypoleptinemia, and residual inflammation risk were 7%, 80%/7%, and 74%, respectively.

The medians of insulin-WIV, leptin-WIV and hsCRP-WIV were [(0.24; IQR 0.15–0.38), (0.25; IQR 0.15–0.40), (0.33; IQR 0.18–0.51)] respectively. On average, hyperleptinemic patients had the highest leptin-WIV and 50% of them had residual inflammation risk.

Severe (fatigue, pain, brain fog, sleep disturbance, and PEM) were reported in 50%, 29%, 41%, 30%, and 57% of patients, respectively. In the adjusted analysis, worse fatigue scores (7.49; SEM, 2.23; p = 0.002) were associated with higher insulin-WIV.

Hyperleptinemia (OR 1.54; 95% CI 1.13–2.09) compared to hypoleptinemia, and residual inflammation risk (OR 1.65; 95% CI 1.21–2.25) were associated with higher odds of severe fatigue. Worse pain scores (7.17; SEM, 2.30; p = 0.005) were associated with higher leptin-WIV, and (8.45; SEM, 2.25; p = 0.0009) higher hsCRP-WIV, and residual inflammation risk (OR 1.75; 95% CI 1.34–2.29) was associated with higher odds of severe pain.

Severe brain fog scores (9.20; SEM, 2.44; p = 0.0008) were associated with higher insulin-WIV, higher leptin-WIV (4.73; SEM, 2.12; p = 0.03). Residual inflammation risk (OR 1.40; 95% CI 1.16–1.77) was associated with higher odds of severe brain fog.

Hyperleptinemia (OR 0.60; 95% CI 0.43–1.19) was associated with lower odds of severe PEM compared to hypoleptinemia, and better sleep quality was associated (6.07; SEM, 1.70; p = 0.001) with higher insulin-WIV, and (3.37; SEM, 1.47; p = 0.03) higher leptin-WIV.

Conclusions: In patients with ME/CFS, symptoms severity was associated with hyperleptinemia, inflammation and within-individual-variability of these biomarkers. Leptin and hsCRP may be clinically useful in predicting symptom severity.

Larger clinical trials are needed to further examine the prediction and causality of these biomarkers in the development of ME/CFS diagnosis. The efficacy and safety of anti-inflammatory therapies may be evaluated in sub-clusters of ME/CFS with metabolic responses and inflammation dysregulations to improve patient-reported symptoms.

Source: Rahaf Al Assil and Jarred W Younger. “The Role of Leptin and Inflammatory Related Biomarkers in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome” in Karandrea S, Agarwal N, Organizing Committee of Cardiometabolic Health Congress. Report from the Scientific Poster Session at the 16th Annual Cardiometabolic Health Congress in National Harbor, USA, 14–17 October 2021. Proceedings. 2022; 80(1):6. https://doi.org/10.3390/proceedings2022080006 (Full text)

News and views in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): The role of co-morbidity and novel treatments

Abstract:

Though affecting many thousands of patients, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) should be considered an orphan disease, since the cause remains elusive and no treatment is available that can provide complete cure. There is reasonable insight into the pathogenesis of signs and symptoms, and treatments specifically directed to immunological, inflammatory and metabolic processes offer relief to an increasing number of patients. Particular attention is given to the importance of co-morbidity requiring appropriate therapy.

Promising results are obtained by treatment with Metformin, or possibly Momordica charantia extract, which will correct insulin resistance, with Meldonium improving the transportation of glucose into the mitochondria, with sodium dichloroacetate activating pyruvate dehydrogenase, and with nutraceutical support reducing oxidative and inflammatory impairment.

Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

Source: Comhaire F, Deslypere JP. News and views in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): The role of co-morbidity and novel treatments. Med Hypotheses. 2019 Oct 22;134:109444. doi: 10.1016/j.mehy.2019.109444. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31669858

The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure

Abstract:

Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation.

In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy.

In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure.

In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well.

There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.

Source: Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci. 2018 Apr 26;12:78. doi: 10.3389/fnbeh.2018.00078. eCollection 2018.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932180/ (Full article)

Changes in growth hormone, insulin, insulinlike growth factors (IGFs), and IGF-binding protein-1 in chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is characterized by severe physical and mental fatigue of central origin. Similar clinical features may occur in disorders of the hypothalamopituitary axis. The aim of the study was to determine whether patients with CFS have abnormalities of the growth hormone/insulinlike growth factor (GH-IGF) axis basally or following hypothalamic stimulation with insulin-induced hypoglycemia.

We compared levels of GH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), insulin, and C-peptide in nondepressed CFS patients and normal controls. We found attenuated basal levels of IGF-I (214 +/- 17 vs. 263.4 +/- 13.4 micrograms/L, p = .036) and IGF-II (420 +/- 19.8 vs. 536 +/- 24.3 micrograms/L, p = .02) in CFS patients and a reduced GH response to hypoglycemia (peak GH; 41.9 +/- 11.5 vs. 106.0 +/- 25.6 mU/L, p = .017). Insulin levels were higher (7.6 +/- 1.0 vs. 4.3 +/- 0.8 mU/L, p = .02) and IGFBP-1 levels were lower (19.7 +/- 4.6 vs. 43.2 +/- 2.7 mg/L, p = .004) in CFS patients compared with controls.

This study provides preliminary data abnormalities of the GH-IGF axis in CFS. It is not apparent whether these changes are components of a primary pathological process or are acquired secondary to behavioral aspects of CFS such as reduced physical activity.

 

Source: Allain TJ, Bearn JA, Coskeran P, Jones J, Checkley A, Butler J, Wessely S, Miell JP. Changes in growth hormone, insulin, insulinlike growth factors (IGFs), and IGF-binding protein-1 in chronic fatigue syndrome. Biol Psychiatry. 1997 Mar 1;41(5):567-73. http://www.ncbi.nlm.nih.gov/pubmed/9046989

 

Chronic fatigue syndrome: influence of histamine, hormones and electrolytes

Abstract:

The chronic fatigue syndrome is poorly understood. We believe the underlying causes in many atopics and women are a persistent infection and hypersensitivity to the immune-suppressive effects of histamine and certain pathogens.

We believe much of the symptomatology can be explained by all four types of hypersensitivity (Gell and Coombs classification) in reaction to a pathogen, electrolyte disturbances which include sometimes permanent changes in cell membranes’ ability to pass electrolytes, sometimes permanent biochemical changes in mitochondrial function, and disturbances of insulin and T3-thyroid hormone functions. We also explain in detail what ‘fatigue’ means for these patients. We present evidence from the medical literature for the plausibility of our hypotheses.

 

Source: Dechene L. Chronic fatigue syndrome: influence of histamine, hormones and electrolytes. Med Hypotheses. 1993 Jan;40(1):55-60. http://www.ncbi.nlm.nih.gov/pubmed/8455468