Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation

Abstract:

Mast cells (MC) are ubiquitous in the body and are critical for allergic diseases, but also in immunity and inflammation, as well as potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal and the adrenal glands that would allow them to regulate, but also be affected by the autonomic nervous system (ANS).

MC are stimulated not only by allergens, but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory and vasoactive mediators. Hence MC may be able to regulate homeostatic functions that appear to be dysfunctional in many conditions, such as postural orthostatic hypertension syndrome (POTS), autism spectrum disorder (ASD), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long-COVID syndrome.

The evidence indicates that there is a possible association between these conditions and diseases associated with mast cell activation, There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.

Source: Theoharides TC, Twahir A, Kempuraj D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Ann Allergy Asthma Immunol. 2023 Nov 9:S1081-1206(23)01397-2. doi: 10.1016/j.anai.2023.10.032. Epub ahead of print. PMID: 37951572. https://pubmed.ncbi.nlm.nih.gov/37951572/

Mast cell activation may contribute to adverse health transitions in COVID-19 patients with frailty

Abstract:

A prominent aspect of the post-coronavirus disease-2019 (post-COVID-19) era is long-COVID. Therefore, precise patient classification and exploration of the corresponding factors affecting long-COVID are crucial for tailored treatment strategies. Frailty is a common age-related clinical syndrome characterized by deteriorated physiological functions of multiple organ systems, which increases susceptibility to stressors.

Herein, we performed an inclusion and exclusion analysis (definite COVID-19 infection diagnosis, clear underlying disease information, ≥60 years old, and repeated sampling of clinical cases) of 10,613 blood samples and identified frailty cases for further investigation. RNA-Seq data were used for differential gene expression and functional and pathway analyses.

The results revealed that patients with frailty were more prone to poor health conversions and more sequelae, and the blood transcriptome had obvious disturbances in pathways associated with immune regulation, metabolism, and stress response. These adverse health transitions were significantly associated with mast cell activation. Additionally, NCAPG, MCM10, and CDC25C were identified as hub genes in the peripheral blood differential gene cluster, which could be used as diagnostic markers of poor health conversion.

Our results indicate that healthcare measures should be prioritized to mitigate adverse health outcomes in this vulnerable patient group, COVID-19 patients with frailty, in post-COVID era.

Source: Xiangqi Li, Chaobao Zhang & Zhijun Bao (2023) Mast cell activation may contribute to adverse health transitions in COVID-19 patients with frailty, Emerging Microbes & Infections, 12:2, DOI: 10.1080/22221751.2023.2251589 https://www.tandfonline.com/doi/pdf/10.1080/22221751.2023.2251589 (Full text)

Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition

Abstract:

The recent pandemic has energized research spotlighting chronic fatigue disorders. The similarities between Long COVID (LC) and Chronic Fatigue Syndrome (CFS), often accompanied by postural orthostatic tachycardia syndrome (POTS) are striking.

Furthermore, the majority afflicted with LC and CFS may be those with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, present in the majority of Americans and characterized by hypomethylation. Elevated homocysteine (Hcy) and depressed B9 and B12 may be links. Speculation about an association between these laboratory analytes and MTHFR abnormalities has been previously reported (Regland et al., 2015).

The absence of a blood-brain barrier (BBB) in CNS circumventricular organs (CVOs) that control autonomic and neuroendocrine functions, problematic in LC, CFS, POTS, and MTHFR, is provocative. Diffusion of CNS Hcy is associated with brain fog, cognitive impairment, and dementia. This provides a distinct link between MTHFR variants and the fog of LC, CFS, and POTS.

Small intestine bacterial overgrowth (SIBO), present in about 17% of Americans, is linked to POTS, mast cell activation syndrome (MCAS), and Ehlers Danlos syndrome (EDS). All exhibit histamine intolerance and female predominance. This may be due to hypomethylation and/or intestinal diamine oxidase (DAO) deficiency.

Metabolism of monoamines and histamine requires methylation. Specific CNS nuclei in CVOs may also provide insight to the POTS paradox. The similar gut microbiomes of LC/CFS (and vitamin D deficiency) may via CVOs trigger an imbalance in glutamate/GABA neurotransmission that translates to neuroendocrine and baroreflex dysfunction. Homozygosity for the MTHFR 677T allele can facilitate hypermethylation via an alternative “rescue” riboflavin pathway triggered by significant Hcy increase.

Hypermethylation predominates in Long Covid. The primary problem in these syndromes is compromised mitochondrial function due to oxidative stress induced by an antioxidant shortfall.

Victims are also frequently deficient in 25(OH)D3 (the storage form of vitamin D), magnesium, and B vitamins, consumed by the persistent chronic inflammatory state. Estrogen increases histamine, norepinephrine, and bradykinin (BKN), which may in part explain the brain fog and its predilection for females.

Source: Patrick W Chambers. Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition. Journal of Orthomolecular Medicine. 38. https://www.researchgate.net/publication/373073968_Long_Covid_POTS_CFS_and_MTHFR_Linked_by_Biochemistry_and_Nutrition#fullTextFileContent (Full text)

Antihistamines improve cardiovascular manifestations and other symptoms of Long-COVID attributed to Mast Cell Activation

Abstract:

Introduction: Long-COVID is a hardly defined condition and there are no effective therapies. Cardiovascular manifestations of Long-COVID include high heart rate, postural tachycardia, and palpitations. Previous studies have suggested that mast cell activation (MCA) may play a role in the pathophysiology of Long-COVID, including in the mechanisms of its cardiovascular manifestations. The aim of the study was to evaluate the effectiveness of a treatment with blockers of histamine receptors in Long-COVID patients who did not respond to other therapies.

Methods: Fourteen patients (F/M=9/5; 49.5±11.5 years) and 13 controls (F/M=8/5; 47.3±8.0 years) with Long-COVID symptoms attributed to MCA were evaluated. Patients were treated with fexofenadine (180 mg/day) and famotidine (40 mg/day). Fatigue, brain fog, abdominal disorders, and increased heart rate were evaluated in treated and untreated patients at baseline and 20 days later.

Results: Long-COVID symptoms disappeared completely in 29% of treated patients. There was significant improvement in each of the considered symptoms (improved or disappeared) in all treated patients, and the improvement grade was significantly greater in treated patients with respect to controls. No significant differences in the outcomes were observed in the controls.

Our data confirm that histamine receptors blockade may be an effective target to successfully treat long-COVID. Our finding supports the underlying role of MCA in the pathophysiology of Long-COVID.

Source: Fabrizio Salvucci, Roberto Codella, ADRIANA COPPOLA, Irene Zacchei, Gabriella Grassi, Maria L. Anti, Nicolita Nitisoara, Livio Luzi, and Carmine Gazzaruso. Antihistamines improve cardiovascular manifestations and other symptoms of Long-COVID attributed to Mast Cell Activation. Front. Cardiovasc. Med. Sec. General Cardiovascular Medicine. Volume 10 – 2023 | doi: 10.3389/fcvm.2023.1202696 https://www.frontiersin.org/articles/10.3389/fcvm.2023.1202696/abstract

Clinical Features of Post-Covid Syndrome

Abstract:

There is no common understanding of the clinical picture of post-covid syndrome. The US regulator CDC proposes to highlight:

(A) persistent symptoms and conditions that begin during acute COVID-19 illness;

B) new onset late complications after asymptomatic disease or a period of acute symptomatic relief or remission;

(C) the evolution of symptoms and conditions that include some persistent symptoms (eg, shortness of breath) with the addition of new symptoms or conditions over time (eg, cognitive difficulties).

Some manifestations may resemble other postviral syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome, dysautonomia (eg, postural orthostatic tachycardia syndrome), or mast cell activation syndrome.

Source: Sayfulloyevich, P. S. ., & Musayevich, U. R. . (2023). Clinical Features of Post-Covid Syndrome. EUROPEAN JOURNAL OF INNOVATION IN NONFORMAL EDUCATION3(6), 34–36. Retrieved from http://inovatus.es/index.php/ejine/article/view/1786 http://inovatus.es/index.php/ejine/article/view/1786/1794 (Full text)

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis

Abstract:

Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects on quality of life and the economy are significant, thus warranting urgent attention to understand the pathophysiology. Herein we describe our perspective that Long COVID is a continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of disease and can cause or exacerbate other pathologies common in Long COVID, such as mast cell activation syndrome and dysautonomia.
Considering the SARS-CoV-2 spike protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, we predict that persistent spike protein will be a key mechanism driving the continued coagulopathy in Long COVID. We discuss several treatment targets to address the coagulopathy, and predict that (particularly early) treatment with combination anticoagulant and antiplatelet drugs will bring significant relief to many patients, supported by a case study. To help focus attention on such treatment targets, we propose Long COVID should be referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require urgent testing, especially as the world tries to co-exist with COVID-19.

Source: Kerr R, Carroll HA. Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis. Research Square; 2023. DOI: 10.21203/rs.3.rs-2939263/v1. https://assets.researchsquare.com/files/rs-2939263/v1_covered_7190a867-1475-4b57-b220-716a953649f1.pdf?c=1684433225 (Full text)

Biological mechanisms underpinning the development of Long COVID

Abstract:

As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-COV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences.

Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available.

To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.

Source: Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of Long COVID. iScience. 2023 May 18:106935. doi: 10.1016/j.isci.2023.106935. Epub ahead of print. PMCID: PMC10193768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193768/ https://www.cell.com/iscience/pdf/S2589-0042(23)01012-X.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS258900422301012X%3Fshowall%3Dtrue (Full text)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators?

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is often associated with various other syndromes or conditions including mast cell activation (MCA), dysmenorrhea and endometriosis, postural tachycardia (POTS) and small fiber neuropathy (SFN). The causes of these syndromes and the reason for their frequent association are not yet fully understood.

We previously published a comprehensive hypothesis of the ME/CFS pathophysiology that explains the majority of symptoms, findings and chronicity of the disease. We wondered whether some of the identified key pathomechanisms in ME/CFS are also operative in MCA, endometriosis and dysmenorrhea, POTS, decreased cerebral blood flow and SFN, and possibly may provide clues on their causes and frequent co-occurrence.

Our analysis indeed provides strong arguments in favor of this assumption, and we conclude that the main pathomechanisms responsible for this association are excessive generation and spillover into the systemic circulation of inflammatory and vasoactive tissue mediators, dysfunctional β2AdR, and the mutual triggering of symptomatology and disease initiation. Overall, vascular dysfunction appears to be a strong common denominator in these linkages.

Source: Wirth KJ, Löhn M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators? Medicina. 2023; 59(5):978. https://doi.org/10.3390/medicina59050978  https://www.mdpi.com/1648-9144/59/5/978 (Full text)

Immunological dysfunction and mast cell activation syndrome in long COVID

Abstract:

At least 65 million people around the world suffer from long COVID, with the majority of cases occurring in the productive age (36–50 years old). Individuals with long COVID are confounded with multiple organ system dysfunctions, long-term organ injury sequelae, and a decreased quality of life. There is an overlapping of risk factors between long COVID and other postviral infection syndromes, so advances in research could also benefit other groups of patients.

Long COVID is the consequence of multiple immune system dysregulation, such as T-cell depletion, innate immune cell hyperactivity, lack of naive T and B cells, and elevated signature of pro-inflammatory cytokines, together with persistent SARS-CoV2 reservoir and other consequences of acute infection.

There is an activated condition of mast cells in long COVID, with abnormal granulation and excessive inflammatory cytokine release. A study by Weinstock et al. indicates that patients with long COVID suffer the same clinical syndrome as patients with mast cell activation syndrome (MCAS).

Diagnosis and treatment of MCAS in patients with long COVID will provide further symptomatic relief, and manage mast cell-mediated hyperinflammation states, which could be useful in the long-term control and recovery of such patients.

Source: Sumantri, Stevent; Rengganis, Iris. Immunological dysfunction and mast cell activation syndrome in long COVID. Asia Pacific Allergy ():10.5415/apallergy.0000000000000022, March 30, 2023. | DOI: 10.5415/apallergy.0000000000000022 https://journals.lww.com/apallergy/Fulltext/9900/Immunological_dysfunction_and_mast_cell_activation.2.aspx (Full text)

Cardiovascular Considerations in the Management of People with Suspected Long COVID

Abstract:

Approximately 15% of adult Canadians with SARS-CoV-2 infection develop lingering symptoms beyond 12 weeks post-acute infection, known as post-COVID condition or long COVID. Some of the commonly reported long COVID cardiovascular symptoms include fatigue, shortness of breath, chest pain, and palpitations. Suspected long-term cardiovascular complications of SARS-CoV-2 infection may present as a constellation of symptoms that can be challenging for clinicians to diagnose and treat.

When assessing patients with these symptoms, clinicians need to keep in mind Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), post-exertional malaise and post-exertional symptom exacerbation (PEM/PESE), cardiac dysautonomia such as Inappropriate Sinus Tachycardia (IST), and Postural Orthostatic Tachycardia Syndrome (POTS), and occasionally Mast Cell Activation Syndrome (MCAS).

This paper summarizes the globally evolving evidence around management of cardiac sequelae of long COVID. In addition, this review includes a Canadian perspective, consisting of a panel of expert opinions from experienced clinicians across Canada who have been involved in management of long COVID. The objective of this review is to offer some practical guidance to cardiologists and generalist clinicians regarding diagnostic and treatment approaches for adult patients with suspected long COVID who continue to experience unexplained cardiac symptoms.

Source: Quinn KL, Lam GY, Walsh JF, Bhéreur A, Brown AD, Chow CW, Christie Chung KY, Cowan J, Crampton N, Décary S, Falcone EL, Graves L, Gross DP, Hanneman K, Harvey PJ, Holmes S, Katz GM, Parhizgar P, Sharkawy A, Tran KC, Waserman S, Zannella VE, Cheung AM. Cardiovascular Considerations in the Management of People with Suspected Long COVID. Can J Cardiol. 2023 Apr 6:S0828-282X(23)00303-3. doi: 10.1016/j.cjca.2023.04.003. Epub ahead of print. PMID: 37030518. Quinn KL, Lam GY, Walsh JF, Bhéreur A, Brown AD, Chow CW, Christie Chung KY, Cowan J, Crampton N, Décary S, Falcone EL, Graves L, Gross DP, Hanneman K, Harvey PJ, Holmes S, Katz GM, Parhizgar P, Sharkawy A, Tran KC, Waserman S, Zannella VE, Cheung AM. Cardiovascular Considerations in the Management of People with Suspected Long COVID. Can J Cardiol. 2023 Apr 6:S0828-282X(23)00303-3. doi: 10.1016/j.cjca.2023.04.003. Epub ahead of print. PMID: 37030518. https://www.onlinecjc.ca/article/S0828-282X(23)00303-3/fulltext (Full text)