Dysregulated platelet function in patients with postacute sequelae of COVID-19

Abstract:

Background: Postacute sequelae of COVID-19 (PASC), also referred to as “Long COVID”, sometimes follows COVID-19, a disease caused by SARS-CoV-2. Although SARS-CoV-2 is well known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Our objective was to evaluate platelet function and thrombotic potential in patients following recovery from SARS-CoV-2, but with clear symptoms of patients with PASC.

Methods: patients with PASC and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by light transmission aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions.

Results: A mild increase in platelet aggregation in patients with PASC through the thromboxane receptor was observed, and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in patients with PASC compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in patients with PASC. Plasma from patients with PASC was an extremely potent activator of washed, healthy platelets – a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals.

Conclusions: patients with PASC show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exist in patients with PASC to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.

Source: Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated platelet function in patients with postacute sequelae of COVID-19. Vasc Med. 2024 Feb 9:1358863X231224383. doi: 10.1177/1358863X231224383. Epub ahead of print. PMID: 38334067. https://pubmed.ncbi.nlm.nih.gov/38334067/

Pulmonary embolism in patients in acute COVID-19, long-COVID and post-COVID syndrome

Abstract:

COVID-19 is a disease caused by the SARS-CoV-2 virus, which, after entering a living organism, uses the ACE-2 protein as a receptor and several other proteins as cofactors of infection. Disease symptomatology is extensive, involving mostly predominant respiratory symptoms, as well as those of the nervous, gastrointestinal, circulatory and other systems. Incidence of COVID-19 also results in markedly different laboratory findings on the hemostatic system with the predominant feature of increased D-dimer levels.

In the pathogenesis of thromboembolic complications in COVID-19, all elements of Virchow’s triad are involved: endothelial damage, coagulation disorders and blood flow disorders. Coagulopathy increases with the severity of the clinical course of COVID-19.

One of the causes of mortality associated with COVID-19 is pulmonary embolism. SARS-CoV-2 infection increases the risk of thromboembolic complications not only in the acute period of the disease. Also in the period of about a month after recovery, there is an increased risk of venous thrombosis and consequently, life-threatening pulmonary embolism.

The classic biomarker of pulmonary embolism in the general population is D-dimers. Among imaging studies, the gold standard for diagnosing this disease is computed tomography of the pulmonary arteries (CTPA). Other useful diagnostic tests are ventilation-perfusion lung scintigraphy (VQ Scans) or echocardiography. Currently reviewed guidelines and recommendations recommend extensive thromboprophylaxis in COVID-19 patients in both acute and chronic phases of the disease.

Source: Tomczyk P, Tomczyk D. Pulmonary embolism in patients in acute COVID-19, long-COVID and post-COVID syndrome. Przegl Epidemiol. 2023;77(2):172-184. doi: 10.32394/pe.77.17. PMID: 37846660. https://pubmed.ncbi.nlm.nih.gov/37846660/

Fibrin microthrombi in bladder urothelium after SARS-CoV-2 infection: Case report

Abstract:

A 45-year-old male with diabetes, hypertension and hyperlipidemia was referred to urology due to persistent symptoms of urinary frequency, urgency, nocturia, erectile dysfunction, and constant pain localized to the bladder, pelvis, and perineal area, 3–4 months after SARS-CoV-2 infection. A bladder biopsy showed urothelial mucosa and submucosa with hemorrhage and fibrin microthrombi in blood vessels. Hydrodistention of the bladder and pelvic floor physical therapy resolved symptoms, though bladder and pain symptoms returned upon reinfection with SARS-CoV-2. Urinalysis revealed elevated urinary interleukin-8, which may indicate localized bladder inflammation.

Source: Hoang Roberts L, Zwaans BMM, Jabbar K, Bartolone SN, Padmanabhan P, Peters KM. Fibrin microthrombi in bladder urothelium after SARS-CoV-2 infection: Case report. Urol Case Rep. 2023 Sep 25;51:102575. doi: 10.1016/j.eucr.2023.102575. PMID: 37829494; PMCID: PMC10565678. https://www.sciencedirect.com/science/article/pii/S2214442023002619 (Full text)

What Role Does Microthrombosis Play in Long COVID?

Abstract:

Soon after the outbreak of coronavirus disease 2019 (COVID-19), unexplained sustained fatigue, cognitive disturbance, and muscle ache/weakness were reported in patients who had recovered from acute COVID-19 infection. This abnormal condition has been recognized as “long COVID (postacute sequelae of COVID-19 [PASC])” with a prevalence estimated to be from 10 to 20% of convalescent patients. Although the pathophysiology of PASC has been studied, the exact mechanism remains obscure.

Microclots in circulation can represent one of the possible causes of PASC. Although hypercoagulability and thrombosis are critical mechanisms of acute COVID-19, recent studies have reported that thromboinflammation continues in some patients, even after the virus has cleared. Viral spike proteins and RNA can be detected months after patients have recovered, findings that may be responsible for persistent thromboinflammation and the development of microclots. Despite this theory, long-term results of anticoagulation, antiplatelet therapy, and vascular endothelial protection are inconsistent, and could not always show beneficial treatment effects.

In summary, PASC reflects a heterogeneous condition, and microclots cannot explain all the presenting symptoms. After clarification of the pathomechanisms of each symptom, a symptom- or biomarker-based stratified approach should be considered for future studies.

Source: Iba T, Connors JM, Levy JH. What Role Does Microthrombosis Play in Long COVID? Semin Thromb Hemost. 2023 Sep 25. doi: 10.1055/s-0043-1774795. Epub ahead of print. PMID: 37748518. https://pubmed.ncbi.nlm.nih.gov/37748518/

Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases

Abstract:

Thromboembolic complications and excessive inflammation are frequent in severe COVID-19, potentially leading to long COVID. In non-COVID studies, we and others demonstrated that circulating Reelin promotes leukocyte infiltration and thrombosis. Thus, we hypothesized that Reelin participates in endothelial dysfunction and hyperinflammation during COVID-19.

We showed that Reelin was increased in COVID-19 patients and correlated with the disease activity. In the severe COVID-19 group, we observed a hyperinflammatory state, as judged by increased concentration of cytokines (IL-1α, IL-4, IL-6, IL-10 and IL-17A), chemokines (IP-10 and MIP-1β), and adhesion markers (E-selectin and ICAM-1).

Reelin level was correlated with IL-1α, IL-4, IP-10, MIP-1β, and ICAM-1, suggesting a specific role for Reelin in COVID-19 progression. Furthermore, Reelin and all of the inflammatory markers aforementioned returned to normal in a long COVID cohort, showing that the hyperinflammatory state was resolved. Finally, we tested Reelin inhibition with the anti-Reelin antibody CR-50 in hACE2 transgenic mice infected with SARS-CoV-2. CR-50 prophylactic treatment decreased mortality and disease severity in this model.

These results demonstrate a direct proinflammatory function for Reelin in COVID-19 and identify it as a drug target. This work opens translational clinical applications in severe SARS-CoV-2 infection and beyond in auto-inflammatory diseases.

Source: Calvier L, Drelich A, Hsu J, Tseng CT, Mina Y, Nath A, Kounnas MZ, Herz J. Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases. Front Immunol. 2023 Jun 27;14:1185748. doi: 10.3389/fimmu.2023.1185748. PMID: 37441066; PMCID: PMC10333573. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333573/ (Full text)

Physiological underpinnings of long COVID: what have we learned?

In a review, Batta et al 2 , addressed the cardiovascular symptoms in COVID-19 patients with a focus on vascular dysfunction, arrhythmias, myocardial ischemia, and discussed the most updated recommendations for the treatment of COVID-19. We previously reported the presence of almost all the receptors of SARS-CoV-2 on cardiomyocytes which makes the heart a favorable target for this virus 3 . Batta et al 2 indicated that the vascular endothelial dysfunction is involved in the pathogenesis of SARS-CoV-2 and hence the activation of pro-inflammatory cytokines leading to increased vascular permeability and thrombosis in many organs.

Tachycardia was the most common cardiac presentation associated with SARS-CoV-2 infection, along with arrhythmias and conduction blocks, myocardial ischemia and injury, and hypertension. Interestingly, the authors reported that the elevated ACE-2 expression on endothelial cells of COVID -19 patients’ lungs indicates an elevated pro-hypertensive angiotensin II level leading to vasoconstriction and aldosterone-driven hypervolemia. Thus, the use of renin-angiotensin-aldosterone inhibitors in hypertension treatment of patients infected with SARS-CoV-2 was cautioned to avoid exacerbated cardiovascular clinical outcome.

An article from Gonzalez-Gonzalez et al. 4 reviewed the application of Virchow’s Triad in detail for the risk of developing stroke and related intravascular thrombotic diseases in the context of COVID-19 infection. The authors discussed each part of Virchow’s triad in detail, such as hypercoagulable state, vascular damage, and intravascular stasis of blood. They looked into literature on the effects of COVID-19 infection for the formation of intravascular and intracardiac clots (leading to stroke), formation of cardiac sequelae and autopsy studies reporting elevated markers in ventricular myocardium. The authors reviewed the risk factor for stroke development, differences between ischemic vs haemorrhagic stroke and frequent complications of COVID-19 patients such as pulmonary embolism. The authors also discussed the current treatment plans and recommended some differential treatment approaches for COVID-19 infection patients concerning known mechanisms of Virchow’s triad. Finally, the authors discussed the outcomes and long-term consequences of COVID-19 infection and the cardiovascular effects of COVID-19 vaccines.

The work from A. Mujalli and co-workers 5 investigated genetic pathways in patients with severe COVID-19 and comorbidities, by means of genome-wide transcriptomic datasets publicly available within the first year of the pandemic. Differential gene expression (DGE), gene ontology (GO), pathway enrichment, functional similarity, phenotypic analysis and drug target identification studies were conducted using a cohort of 120 COVID-19 patients, 281 patients with chronic comorbidities (153 CVD, 64 atherosclerosis, 33 diabetes, and 31 obesity), and 252 patients with different infectious diseases (145 respiratory syncytial virus, 95 influenza, and 12 MERS). In total, 29 genes were identified to contributing to the clinical severity of COVID-19 infection in patients with comorbidities. Remarkably, identified genes were found to be involved in immune cell homeostasis during innate immunity, mostly in monocyte and macrophage function. In addition, results from drug target identification studies show a mismatch between the currently used drugs in COVID-19 therapy and predicted drugs against identified genes.

Furtheremore, in this issue of the Journal, Chan et al 6 examined the association of COVID-19 with heart rate (HR) and blood pressure (BP) variability during exercise in a cohort of 18 patients with prior COVID-19 infection (equally split between symptomatic and asymptomatic), and a cohort of 9 controls who were never infected with COVID-19. Using a rigorous experimental design, the investigators measured HR and BP at regular intervals before, during, and after submaximal exercise, and quantified HR and BP variability on time and frequency domains. Baseline HR and BP were not significantly different between groups (symptomatic vs. asymptomatic vs. controls), nor were they different after completing a bout of submaximal exercise at a comparable workload. However, HR and BP variability was blunted only in individuals with prior symptomatic COVID-19 infection, but not in controls or those with a prior asymptomatic infection, suggesting an underlying degree of autonomic nervous system dysfunction in affected individuals.

The authors are to be lauded for their elegant and clinically relevant work, despite the obvious limitation of small sample size, since it provides much needed insight into COVID-19-induced abnormalities in cardiac physiology. The current findings provide a potential explanation for exercise intolerance, a frequently reported long-term symptom among survivors of COVID-19, since blunting of HR and BP variability are markers of impaired parasympathetic nervous system and poor cardiovascular health.In conclusion, the COVID-19 pandemic affected millions around the globe before it started abating with the advent of the emergent vaccines that were approved for use on emergency basis.

The WHO declared the end of the pandemic after three years of its surge. While millions succumbed to this deadly respiratory infection, survivors from this illness, particularity those who were severely sick, are reporting cardiac and nervous abnormalities. We hope that this series provides a new perspectives on the manifestations of COVID-19 in the heart, the brain, and the vasculature with the hope to guide therapeutic interventions for patients suffering from long term sequelae of SARS-CoV-2 infection.

Source: Moni Nader1, Georges E. Haddad, Jacobo Elies, Sriharsha Kantamneni and Firas Albadarin. Physiological underpinnings of long COVID: what have we learned? Front. Physiol. Sec. Clinical and Translational Physiology. Volume 14 – 2023 | doi: 10.3389/fphys.2023.122455 https://www.frontiersin.org/articles/10.3389/fphys.2023.1224550/full (Full text)

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis

Abstract:

Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects on quality of life and the economy are significant, thus warranting urgent attention to understand the pathophysiology. Herein we describe our perspective that Long COVID is a continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of disease and can cause or exacerbate other pathologies common in Long COVID, such as mast cell activation syndrome and dysautonomia.
Considering the SARS-CoV-2 spike protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, we predict that persistent spike protein will be a key mechanism driving the continued coagulopathy in Long COVID. We discuss several treatment targets to address the coagulopathy, and predict that (particularly early) treatment with combination anticoagulant and antiplatelet drugs will bring significant relief to many patients, supported by a case study. To help focus attention on such treatment targets, we propose Long COVID should be referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require urgent testing, especially as the world tries to co-exist with COVID-19.

Source: Kerr R, Carroll HA. Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis. Research Square; 2023. DOI: 10.21203/rs.3.rs-2939263/v1. https://assets.researchsquare.com/files/rs-2939263/v1_covered_7190a867-1475-4b57-b220-716a953649f1.pdf?c=1684433225 (Full text)

Long COVID: pathophysiological factors and abnormalities of coagulation

Abstract:

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction).

These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

Source: Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023 Jun;34(6):321-344. doi: 10.1016/j.tem.2023.03.002. Epub 2023 Apr 19. PMID: 37080828; PMCID: PMC10113134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113134/ (Full text)

Damage to endothelial barriers and its contribution to long COVID

Abstract:

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development.

Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage.

During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.

Source: Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis. 2023 Apr 27:1–18. doi: 10.1007/s10456-023-09878-5. Epub ahead of print. PMID: 37103631; PMCID: PMC10134732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134732/ (Full text)

Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae?

Abstract:

Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogenous symptoms across multiple organs systems. Here, we discuss the current evidence linking thrombo-inflammation to Post-acute sequelae of COVID-19 (PASC).

Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with increased thrombin generation capacity, and abnormalities in platelet counts in PASC. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and NETosis. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-Dimer in the circulation, as well as perfusion abnormalities in the lung and brain of Long COVID patients. Also, COVID-19 survivors suffer from an increased rate of arterial and venous thrombotic events.

We discuss three important, potentially intertwined hypotheses, that might contribute to thromboinflammation in Long COVID: Lasting structural changes, most prominently endothelial damage, caused during initial infection, a persistent viral reservoir, and immunopathology driven by a misguided immune system.

Lastly, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to Long COVID.

Source: Nicolai L, Kaiser R, Stark K. Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae? J Thromb Haemost. 2023 May 11:S1538-7836(23)00400-2. doi: 10.1016/j.jtha.2023.04.039. Epub ahead of print. PMID: 37178769; PMCID: PMC10174338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174338/ (Full text)