Case report: A case of Acute Macular Neuroretinopathy secondary to Influenza A virus during Long COVID

Abstract:

Ocular abnormalities have been reported in association with viral infections, including Long COVID, a debilitating illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a case of a female patient diagnosed with Acute Macular Neuroretinopathy (AMN) following an Influenza A virus infection during Long COVID who experienced severe inflammation symptoms and ocular complications. We hypothesize that the rare occurrence of AMN in this patient could be associated with the immune storm secondary to the viral infection during Long COVID.

Source: Zhang J, Xia Y, Li X, He R, Xie X. Case report: A case of Acute Macular Neuroretinopathy secondary to Influenza A virus during Long COVID. Front Immunol. 2024 Jan 15;14:1302504. doi: 10.3389/fimmu.2023.1302504. PMID: 38288123; PMCID: PMC10822910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822910/ (Full text)

A brief overview of SARS-CoV-2 infection and its management strategies: a recent update

Abstract:

The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease’s severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction.

Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections.

Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative.

This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.

Source: Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem. 2023 Sep 24. doi: 10.1007/s11010-023-04848-3. Epub ahead of print. PMID: 37742314. https://link.springer.com/article/10.1007/s11010-023-04848-3 (Full text)

Bone marrow alterations in COVID-19 infection: The root of hematological problems

Abstract:

Introduction: The 2019 coronavirus disease (COVID-19) is a respiratory infection caused by the SARS-CoV-2 virus with a significant impact on the hematopoietic system and homeostasis. The effect of the virus on blood cells indicates the involvement of the bone marrow (BM) as the place of production and maturation of these cells by the virus and it reminds the necessity of investigating the effect of the virus on the bone marrow.

Method: To investigate the effects of COVID-19 infection in BM, we reviewed literature from the Google Scholar search engine and PubMed database up to 2022 using the terms “COVID-19; SARS-CoV-2; Bone marrow; Thrombocytopenia; HemophagocytosisPancytopenia and Thrombocytopenia.

Results: Infection with the SARS-CoV-2 virus is accompanied by alterations such as single-line cytopenia, pancytopenia, hemophagocytosis, and BM necrosis. The presence of factors such as cytokine release syndrome, the direct effect of the virus on cells through different receptors, and the side effects of current treatments such as corticosteroids are some of the important mechanisms in the occurrence of these alterations.

Conclusion: To our knowledge, this review is the first study to comprehensively investigate BM alterations caused by SAR-CoV-2 virus infection. The available findings show that the significant impact of this viral infection on blood cells and the clinical consequences resulting from them are deeper than previously thought and it may be rooted in the changes that the virus causes in the BM of patients.

Source: Zeylabi F, Nameh Goshay Fard N, Parsi A, Pezeshki SMS. Bone marrow alterations in COVID-19 infection: The root of hematological problems. Curr Res Transl Med. 2023 Jul 25;71(3):103407. doi: 10.1016/j.retram.2023.103407. Epub ahead of print. PMID: 37544028. https://www.sciencedirect.com/science/article/abs/pii/S2452318623000314 (Full text)

Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases

Abstract:

Thromboembolic complications and excessive inflammation are frequent in severe COVID-19, potentially leading to long COVID. In non-COVID studies, we and others demonstrated that circulating Reelin promotes leukocyte infiltration and thrombosis. Thus, we hypothesized that Reelin participates in endothelial dysfunction and hyperinflammation during COVID-19.

We showed that Reelin was increased in COVID-19 patients and correlated with the disease activity. In the severe COVID-19 group, we observed a hyperinflammatory state, as judged by increased concentration of cytokines (IL-1α, IL-4, IL-6, IL-10 and IL-17A), chemokines (IP-10 and MIP-1β), and adhesion markers (E-selectin and ICAM-1).

Reelin level was correlated with IL-1α, IL-4, IP-10, MIP-1β, and ICAM-1, suggesting a specific role for Reelin in COVID-19 progression. Furthermore, Reelin and all of the inflammatory markers aforementioned returned to normal in a long COVID cohort, showing that the hyperinflammatory state was resolved. Finally, we tested Reelin inhibition with the anti-Reelin antibody CR-50 in hACE2 transgenic mice infected with SARS-CoV-2. CR-50 prophylactic treatment decreased mortality and disease severity in this model.

These results demonstrate a direct proinflammatory function for Reelin in COVID-19 and identify it as a drug target. This work opens translational clinical applications in severe SARS-CoV-2 infection and beyond in auto-inflammatory diseases.

Source: Calvier L, Drelich A, Hsu J, Tseng CT, Mina Y, Nath A, Kounnas MZ, Herz J. Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases. Front Immunol. 2023 Jun 27;14:1185748. doi: 10.3389/fimmu.2023.1185748. PMID: 37441066; PMCID: PMC10333573. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333573/ (Full text)

Fatigue in Post-Acute Sequelae of Coronavirus Disease 2019

Abstract:

Fatigue from post-acute sequelae of coronavirus disease 2019 is a complex constellation of symptoms that could be driven by a wide spectrum of underlying etiologies. Despite this, there seems to be hope for treatment plans that focus on addressing possible etiologies and creating a path to improving quality of life and a paced return to activity.

Source: Abbott Z, Summers W, Niehaus W. Fatigue in Post-Acute Sequelae of Coronavirus Disease 2019. Phys Med Rehabil Clin N Am. 2023 Aug;34(3):607-621. doi: 10.1016/j.pmr.2023.04.006. Epub 2023 Apr 24. PMID: 37419535; PMCID: PMC10123359. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123359/ (Full text)

Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics

Abstract:

Background: SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper—Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells—DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts—OBs and osteoclasts—OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002–2004 revealed the long-term negative impact (decreased bone mineral density—BMDs) of these infections on bone health.

Methodology: We used the keywords “immunopathogenesis of SARS-CoV-2,” “SARS-CoV-2 and bone cells,” “factors influencing bone health and COVID-19,” “GUT microbiota,” and “COVID-19 and Bone health” to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus.

Conclusion: Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota—GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.

Source: Sapra L, Saini C, Garg B, Gupta R, Verma B, Mishra PK, Srivastava RK. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res. 2022 Sep;71(9):1025-1040. doi: 10.1007/s00011-022-01616-9. Epub 2022 Jul 28. PMID: 35900380; PMCID: PMC9330992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330992/ (Full text)

Recuperative herbal formula Jing Si maintains vasculature permeability balance, regulates inflammation and assuages concomitants of “Long-Covid”

Abstract:

Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19.

In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts.

The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells.

Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.

Source: Chiang CY, Lin YJ, Weng WT, Lin HD, Lu CY, Chen WJ, Shih CY, Lin PY, Lin SZ, Ho TJ, Shibu MA, Huang CY. Recuperative herbal formula Jing Si maintains vasculature permeability balance, regulates inflammation and assuages concomitants of “Long-Covid”. Biomed Pharmacother. 2023 Apr 26;163:114752. doi: 10.1016/j.biopha.2023.114752. Epub ahead of print. PMID: 37116351; PMCID: PMC10130602. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130602/ (Full text)

Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19

Abstract:

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach.

Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology.

Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.

Source: Druzak, S., Iffrig, E., Roberts, B.R. et al. Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat Commun 14, 1638 (2023). https://doi.org/10.1038/s41467-023-37269-3 (Full text)

What is really ‘Long COVID’?

Abstract:

The previous acute respiratory diseases caused by viruses originating from China or the middle east (e.g., SARS, MERS) remained fast developing short diseases without major sequalae or any long-lasting complications. The new COVID-19, on the other hand, not only that it rapidly spread over the world, but some patients never fully recovered or even if they did, a few weeks later started to complain not only of shortness of breath, if any, but general weakness, muscle pains and ‘brain fog’, i.e., fuzzy memories. Thus, these signs and symptoms were eventually labelled ‘long COVID’, for which the most widely used definition is ‘new signs and symptoms occurring 4-8 weeks after recovering from acute stage of COVID-19’.

The other most frequent manifestations associated with long COVID include headache, loss of memory, smell and of hair, nausea, and vomiting. Thus, long COVID is not a simple disease, but complex disorder of several organ systems malfunctioning; hence, it is probably more appropriate to call this a syndrome.

The pathogenesis of long COVID syndrome is poorly understood, but initial and persistent vascular endothelial injury that often triggers the formation of microthrombi that if dislodged as emboli, damage several organs, especially in the brain, heart and kidney, by creating microinfarcts.

The other major contributory mechanistic factor is the persistent cytokine storm that may last longer in long COVID patients than in others, probably triggered by aggregates of SARS-Co-2 discovered recently in the adrenal cortex, kidney and brain.

The prevalence of long COVID is relatively high, e.g., initially varied 3-30%, and recent data indicate that 2.5% of UK population suffers from this syndrome, while in the US 14.7% of acute COVID-19 patients continued to have symptoms longer than 2 months. Thus, the long COVID syndrome deserves to be further investigated, both from clinical and basic research perspectives.

Source: Szabo S, Zayachkivska O, Hussain A, Muller V. What is really ‘Long COVID’? Inflammopharmacology. 2023 Mar 25:1–7. doi: 10.1007/s10787-023-01194-0. Epub ahead of print. PMID: 36964860; PMCID: PMC10039447. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039447/ (Full text)

Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review

Abstract:

Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders and cognitive disturbances have been observed in PACS. The review was conducted based on PRISMA-S guidelines for literature search strategy for systematic reviews.

A cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response in the brain by activating microglia, astrocytes, and other immune cells leading to neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines, chemokines, acute phase proteins and adhesion molecules have been implicated in psychiatric disorders and play a major role in the precipitation of neuropsychiatric symptoms. Impaired adult neurogenesis has been linked with a variety of disorders like depression, anxiety, cognitive decline, and dementia.

Persistence of neuroinflammation was observed in COVID-19 survivors 3 months after recovery. Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory cytokines supressing anti-inflammatory cytokines and chemokines favouring adult neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in PACS, there is more possibility for a potential impairment in adult neurogenesis in COVID-19 survivors. This narrative review aims to discuss the various neuroinflammatory processes during PACS and its effect on adult neurogenesis.

Source: Saikarthik J, Saraswathi I, Alarifi A, Al-Atram AA, Mickeymaray S, Paramasivam A, Shaikh S, Jeraud M, Alothaim AS. Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review. PeerJ. 2022 Nov 4;10:e14227. doi: 10.7717/peerj.14227. PMID: 36353605; PMCID: PMC9639419. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639419/ (Full text)