First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody

Abstract:

With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5).
Kinetic modeling results aligned with T cell–trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.
Source: Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, Sen F, Cohen SH, Schmiedehausen K, Badawi RD, Shacklett BL, Wilson I, Cherry SR. First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody. Sci Adv. 2023 Oct 13;9(41):eadh7968. doi: 10.1126/sciadv.adh7968. Epub 2023 Oct 12. PMID: 37824612; PMCID: PMC10569706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569706/ (Full text)

Bone marrow alterations in COVID-19 infection: The root of hematological problems

Abstract:

Introduction: The 2019 coronavirus disease (COVID-19) is a respiratory infection caused by the SARS-CoV-2 virus with a significant impact on the hematopoietic system and homeostasis. The effect of the virus on blood cells indicates the involvement of the bone marrow (BM) as the place of production and maturation of these cells by the virus and it reminds the necessity of investigating the effect of the virus on the bone marrow.

Method: To investigate the effects of COVID-19 infection in BM, we reviewed literature from the Google Scholar search engine and PubMed database up to 2022 using the terms “COVID-19; SARS-CoV-2; Bone marrow; Thrombocytopenia; HemophagocytosisPancytopenia and Thrombocytopenia.

Results: Infection with the SARS-CoV-2 virus is accompanied by alterations such as single-line cytopenia, pancytopenia, hemophagocytosis, and BM necrosis. The presence of factors such as cytokine release syndrome, the direct effect of the virus on cells through different receptors, and the side effects of current treatments such as corticosteroids are some of the important mechanisms in the occurrence of these alterations.

Conclusion: To our knowledge, this review is the first study to comprehensively investigate BM alterations caused by SAR-CoV-2 virus infection. The available findings show that the significant impact of this viral infection on blood cells and the clinical consequences resulting from them are deeper than previously thought and it may be rooted in the changes that the virus causes in the BM of patients.

Source: Zeylabi F, Nameh Goshay Fard N, Parsi A, Pezeshki SMS. Bone marrow alterations in COVID-19 infection: The root of hematological problems. Curr Res Transl Med. 2023 Jul 25;71(3):103407. doi: 10.1016/j.retram.2023.103407. Epub ahead of print. PMID: 37544028. https://www.sciencedirect.com/science/article/abs/pii/S2452318623000314 (Full text)

Chronic Fatigue Syndrome and Bone Marrow Defects of the Jaw – A Case Report on Additional Dental X-Ray Diagnostics with Ultrasound

Abstract:

Purpose: This paper aims to demonstrate the additional benefit of ultrasound in the diagnosis of chronic osteolysis and osteonecrosis (bone marrow defects) of the jaw shown in a clinical case report.

Patients and methods: A case of chronic fatigue syndrome (CFS) in a young man presenting the typical, ambiguous symptoms, which were accompanied by headaches and tinnitus. X-ray techniques, namely panoramic radiographs (OPG) and cone beam computed tomography (DVT/CBCT), failed to produce any remarkable findings of bone marrow defects (BMDJ) in the jawbone. However, the measurement of bone density using trans-alveolar ultrasound (TAU) indicated a possible bone marrow defect in the lower left jawbone.

Results: Surgery was undertaken at the conspicuous area. Additional to softened, ischemic, fatty tissue, a black area was revealed, which was surprisingly subsequently identified as aspergillosis by histopathological analysis. In addition, the excessive local RANTES/CCL5 expression found in the affected area confirmed the necessity for surgical debridement and additional findings of TAU.

Conclusion: In contrast to radiography, complementary TAU imaging of the BMDJ revealed chronic inflammatory signaling RANTES/CCL5 pathways and fungal colonization. This case report supports the need for additional diagnostic techniques beyond radiographic modalities, which can help to elucidate the diagnostic composition and knowledge of the bone manifestations of systemic diseases.

Source: Lechner J, Schick F. Chronic Fatigue Syndrome and Bone Marrow Defects of the Jaw – A Case Report on Additional Dental X-Ray Diagnostics with Ultrasound. Int Med Case Rep J. 2021 Apr 19;14:241-249. doi: 10.2147/IMCRJ.S306641. PMID: 33907473; PMCID: PMC8064682. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064682/ (Full text)