Dysregulations in hemostasis, metabolism, immune response, and angiogenesis in post-acute COVID-19 syndrome with and without postural orthostatic tachycardia syndrome: a multi-omic profiling study

Abstract:

Post-acute COVID-19 (PACS) are associated with cardiovascular dysfunction, especially postural orthostatic tachycardia syndrome (POTS). Patients with PACS, both in the absence or presence of POTS, exhibit a wide range of persisting symptoms long after the acute infection. Some of these symptoms may stem from alterations in cardiovascular homeostasis, but the exact mechanisms are poorly understood.

The aim of this study was to provide a broad molecular characterization of patients with PACS with (PACS + POTS) and without (PACS-POTS) POTS compared to healthy subjects, including a broad proteomic characterization with a focus on plasma cardiometabolic proteins, quantification of cytokines/chemokines and determination of plasma sphingolipid levels.

Twenty-one healthy subjects without a prior COVID-19 infection (mean age 43 years, 95% females), 20 non-hospitalized patients with PACS + POTS (mean age 39 years, 95% females) and 22 non-hospitalized patients with PACS-POTS (mean age 44 years, 100% females) were studied. PACS patients were non-hospitalized and recruited ≈18 months after the acute infection.

Cardiometabolic proteomic analyses revealed a dysregulation of ≈200 out of 700 analyzed proteins in both PACS groups vs. healthy subjects with the majority (> 90%) being upregulated. There was a large overlap (> 90%) with no major differences between the PACS groups. Gene ontology enrichment analysis revealed alterations in hemostasis/coagulation, metabolism, immune responses, and angiogenesis in PACS vs. healthy controls.

Furthermore, 11 out of 33 cytokines/chemokines were significantly upregulated both in PACS + POTS and PACS-POTS vs. healthy controls and none of the cytokines were downregulated. There were no differences in between the PACS groups in the cytokine levels. Lastly, 16 and 19 out of 88 sphingolipids were significantly dysregulated in PACS + POTS and PACS-POTS, respectively, compared to controls with no differences between the groups.

Collectively, these observations suggest a clear and distinct dysregulation in the proteome, cytokines/chemokines, and sphingolipid levels in PACS patients compared to healthy subjects without any clear signature associated with POTS. This enhances our understanding and might pave the way for future experimental and clinical investigations to elucidate and/or target resolution of inflammation and micro-clots and restore the hemostasis and immunity in PACS.

Source: Mahdi, A., Zhao, A., Fredengren, E. et al. Dysregulations in hemostasis, metabolism, immune response, and angiogenesis in post-acute COVID-19 syndrome with and without postural orthostatic tachycardia syndrome: a multi-omic profiling study. Sci Rep 13, 20230 (2023). https://doi.org/10.1038/s41598-023-47539-1 https://www.nature.com/articles/s41598-023-47539-1 (Full study)

Exercise Capacity and Vascular Function in Long-COVID Sufferers

Abstract:

Background: Exercise intolerance is a prominent aetiology of long-COVID syndrome, yet the mechanisms causing the debilitation remain unknown. Vascular dysfunction is thought to play a role, hence we sought to determine if there is a relationship between exercise capacity and vascular function in COVID survivors.

Methods: Forty-two COVID-19 survivors; 33 self-identified long-COVID sufferers and 9 recovered controls (40.7±11.8 vs 40.2±14.5 years, both 67% female) underwent extensive phenotyping >3 months post-infection. Blood pressure (BP) and heart rate were measured (automated BP device), before carotid, femoral, and radial tonometry (carotid–femoral pulse wave velocity; [cPWV], augmentation index; [AIx]) were performed to assess vascular stiffness. Endothelium-dependent and independent dilatation were assessed via brachial artery flow-mediated dilation ([FMD]; Doppler-ultrasound) in response to reactive hyperaemia and glyceryl trinitrate respectively. Cardiopulmonary exercise testing determined peak oxygen uptake (VO2).

Results: Long-COVID sufferers had reduced VO2 peak compared to controls (26.5±7.0 vs 32.8±11.3 ml/min/kg, p= 0.045). Haemodynamic and vascular function were similar between groups, though there was a medium effect size (ES) for between group differences in cPWV (6.6±1.2 vs 6.1±0.9 m/sec, p=0.20; ES 0.44) and AIx (14±15% vs 4±16%, p=0.11; ES 0.67). VO2 peak was inversely correlated with AIx (r = -0.60, p<0.001) and cPWV (r = -0.55, p<0.001). There was no significant association between endothelial function and exercise capacity parameters.

Conclusions: Lower VO2peak measures in long-COVID participants were strongly associated with increased AIx and cPWV. These findings indicate the need for further longitudinal investigations to determine if these manifestations persist and impact long-term cardiovascular health.

Source: I.Wallace, E. Howden, D. Green, G. Sesa-Ashton. Exercise Capacity and Vascular Function in Long-COVID Sufferers. Heart, Lung and Circulation. ABSTRACT| VOLUME 32, SUPPLEMENT 3, S114-S115, JULY 2023. https://www.heartlungcirc.org/article/S1443-9506(23)04000-3/fulltext 

Long COVID and its cardiovascular consequences: What is known?

Abstract:

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused high morbidity and mortality and has been a source of substantial challenges for healthcare systems globally. Despite a full recovery, a significant proportion of patients demonstrate a broad spectrum of cardiovascular, pulmonary and neurological symptoms that are believed to be caused by long-term tissue damage and pathological inflammation, which play a vital role in disease development. Microvascular dysfunction also causes significant health problems.

This review aimed to critically appraise the current data on the long-term cardiovascular sequelae of coronavirus disease 2019 (COVID-19), with a primary focus on cardiovascular symptoms such as chest pain, fatigue, palpitations, and breathlessness, and more significant disease entities including myocarditis, pericarditis and postural tachycardia syndrome. Potential risk factors identified in recent studies that contribute towards the development of long COVID are also included alongside a summary of recent advances in diagnostics and putative treatment options.

Source: Składanek JA, Leśkiewicz M, Gumiężna K, Baruś P, Piasecki A, Klimczak-Tomaniak D, Sygitowicz G, Kochman J, Grabowski M, Tomaniak M. Long COVID and its cardiovascular consequences: What is known? Adv Clin Exp Med. 2023 Jun 30. doi: 10.17219/acem/167482. Epub ahead of print. PMID: 37386857. https://advances.umw.edu.pl/en/ahead-of-print/167482/ (Full text)

Physiological underpinnings of long COVID: what have we learned?

In a review, Batta et al 2 , addressed the cardiovascular symptoms in COVID-19 patients with a focus on vascular dysfunction, arrhythmias, myocardial ischemia, and discussed the most updated recommendations for the treatment of COVID-19. We previously reported the presence of almost all the receptors of SARS-CoV-2 on cardiomyocytes which makes the heart a favorable target for this virus 3 . Batta et al 2 indicated that the vascular endothelial dysfunction is involved in the pathogenesis of SARS-CoV-2 and hence the activation of pro-inflammatory cytokines leading to increased vascular permeability and thrombosis in many organs.

Tachycardia was the most common cardiac presentation associated with SARS-CoV-2 infection, along with arrhythmias and conduction blocks, myocardial ischemia and injury, and hypertension. Interestingly, the authors reported that the elevated ACE-2 expression on endothelial cells of COVID -19 patients’ lungs indicates an elevated pro-hypertensive angiotensin II level leading to vasoconstriction and aldosterone-driven hypervolemia. Thus, the use of renin-angiotensin-aldosterone inhibitors in hypertension treatment of patients infected with SARS-CoV-2 was cautioned to avoid exacerbated cardiovascular clinical outcome.

An article from Gonzalez-Gonzalez et al. 4 reviewed the application of Virchow’s Triad in detail for the risk of developing stroke and related intravascular thrombotic diseases in the context of COVID-19 infection. The authors discussed each part of Virchow’s triad in detail, such as hypercoagulable state, vascular damage, and intravascular stasis of blood. They looked into literature on the effects of COVID-19 infection for the formation of intravascular and intracardiac clots (leading to stroke), formation of cardiac sequelae and autopsy studies reporting elevated markers in ventricular myocardium. The authors reviewed the risk factor for stroke development, differences between ischemic vs haemorrhagic stroke and frequent complications of COVID-19 patients such as pulmonary embolism. The authors also discussed the current treatment plans and recommended some differential treatment approaches for COVID-19 infection patients concerning known mechanisms of Virchow’s triad. Finally, the authors discussed the outcomes and long-term consequences of COVID-19 infection and the cardiovascular effects of COVID-19 vaccines.

The work from A. Mujalli and co-workers 5 investigated genetic pathways in patients with severe COVID-19 and comorbidities, by means of genome-wide transcriptomic datasets publicly available within the first year of the pandemic. Differential gene expression (DGE), gene ontology (GO), pathway enrichment, functional similarity, phenotypic analysis and drug target identification studies were conducted using a cohort of 120 COVID-19 patients, 281 patients with chronic comorbidities (153 CVD, 64 atherosclerosis, 33 diabetes, and 31 obesity), and 252 patients with different infectious diseases (145 respiratory syncytial virus, 95 influenza, and 12 MERS). In total, 29 genes were identified to contributing to the clinical severity of COVID-19 infection in patients with comorbidities. Remarkably, identified genes were found to be involved in immune cell homeostasis during innate immunity, mostly in monocyte and macrophage function. In addition, results from drug target identification studies show a mismatch between the currently used drugs in COVID-19 therapy and predicted drugs against identified genes.

Furtheremore, in this issue of the Journal, Chan et al 6 examined the association of COVID-19 with heart rate (HR) and blood pressure (BP) variability during exercise in a cohort of 18 patients with prior COVID-19 infection (equally split between symptomatic and asymptomatic), and a cohort of 9 controls who were never infected with COVID-19. Using a rigorous experimental design, the investigators measured HR and BP at regular intervals before, during, and after submaximal exercise, and quantified HR and BP variability on time and frequency domains. Baseline HR and BP were not significantly different between groups (symptomatic vs. asymptomatic vs. controls), nor were they different after completing a bout of submaximal exercise at a comparable workload. However, HR and BP variability was blunted only in individuals with prior symptomatic COVID-19 infection, but not in controls or those with a prior asymptomatic infection, suggesting an underlying degree of autonomic nervous system dysfunction in affected individuals.

The authors are to be lauded for their elegant and clinically relevant work, despite the obvious limitation of small sample size, since it provides much needed insight into COVID-19-induced abnormalities in cardiac physiology. The current findings provide a potential explanation for exercise intolerance, a frequently reported long-term symptom among survivors of COVID-19, since blunting of HR and BP variability are markers of impaired parasympathetic nervous system and poor cardiovascular health.In conclusion, the COVID-19 pandemic affected millions around the globe before it started abating with the advent of the emergent vaccines that were approved for use on emergency basis.

The WHO declared the end of the pandemic after three years of its surge. While millions succumbed to this deadly respiratory infection, survivors from this illness, particularity those who were severely sick, are reporting cardiac and nervous abnormalities. We hope that this series provides a new perspectives on the manifestations of COVID-19 in the heart, the brain, and the vasculature with the hope to guide therapeutic interventions for patients suffering from long term sequelae of SARS-CoV-2 infection.

Source: Moni Nader1, Georges E. Haddad, Jacobo Elies, Sriharsha Kantamneni and Firas Albadarin. Physiological underpinnings of long COVID: what have we learned? Front. Physiol. Sec. Clinical and Translational Physiology. Volume 14 – 2023 | doi: 10.3389/fphys.2023.122455 https://www.frontiersin.org/articles/10.3389/fphys.2023.1224550/full (Full text)

A Post-Pandemic Enigma: The Cardiovascular Impact of Post-Acute Sequelae of SARS-CoV-2

Abstract:

COVID-19 has become the first modern-day pandemic of historic proportion, affecting >600 million individuals worldwide and causing >6.5 million deaths. While acute infection has had devastating consequences, postacute sequelae of SARS-CoV-2 infection appears to be a pandemic of its own, impacting up to one-third of survivors and often causing symptoms suggestive of cardiovascular phenomena. This review will highlight the suspected pathophysiology of postacute sequelae of SARS-CoV-2, its influence on the cardiovascular system, and potential treatment strategies.

Source: Singh TK, Zidar DA, McCrae K, Highland KB, Englund K, Cameron SJ, Chung MK. A Post-Pandemic Enigma: The Cardiovascular Impact of Post-Acute Sequelae of SARS-CoV-2. Circ Res. 2023 May 12;132(10):1358-1373. doi: 10.1161/CIRCRESAHA.122.322228. Epub 2023 May 11. PMID: 37167358; PMCID: PMC10171306. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171306/ (Full text)

Cardiovascular Manifestations of the Long COVID Syndrome.

Abstract:

While most coronavirus 2019 (COVID-19) survivors have had complete resolution of symptoms, a significant proportion have suffered from incomplete recovery. Cardiopulmonary symptoms, such as dyspnea, chest pain, and palpitations are responsible for a substantial symptom burden in COVID-19 survivors.

Studies have revealed persistent myocardial injury with late gadolinium enhancement and myocardial scar on cardiac magnetic resonance in a significant proportion of patients. Evidence of myocardial edema, active inflammation, left ventricular dysfunction, and right ventricular dysfunction, is limited to a minority of patients.

Large observational studies of COVID-19 survivors have indicated an increased risk of cardiovascular disease compared to the general population, including the risk of coronary artery disease, cardiomyopathy, and arrhythmias. Management of long COVID is focused on supportive therapy to reduce systemic inflammation. Patients with high cardiovascular risk, namely, those who had cardiovascular complications during acute illness, patients who have new onset cardiopulmonary symptoms in the postinfectious period, and competitive athletes, should be evaluated by a cardiovascular specialist.

Management of cardiovascular sequelae is currently based on general expert guideline recommendations given the lack of evidence specific to long COVID syndrome. In this review, we outline the cardiovascular manifestations of long COVID, the current evidence supporting cardiac abnormalities in the postinfectious period, and the recommended management of these patients.

Source: Lorente-Ros M, Das S, Elias J, Frishman WH, Aronow WS. Cardiovascular Manifestations of the Long COVID Syndrome. Cardiol Rev. 2023 Apr 10. doi: 10.1097/CRD.0000000000000552. Epub ahead of print. PMID: 37071080.

Long COVID symptoms, pathophysiology and possible mechanisms: Still, we are learning!

Abstract:
Long COVID is an unpredicted sequel of COVID-19 disease documented nearly in half cases globally. Long COVID is multisystem syndrome with nonspecific symptoms and organic signs of unidentified pathology occurs after COVID-19 disease. Long COVID symptoms has been documented in some cases irrespective of disease severity or hospitalization. Long COVID symptoms has significant impact on quality of life in those cases suffered from disease in recent past and lingering to almost two years since infection.
Importantly, not all cases of COVID-19 were shown long COVID symptoms. Most common long COVID symptoms (ten in number) as joint pain, fatigability, chest discomfort, shortness of breath, hair loss, chest pain, weight gain, anxiety/depression & memory impairment. Pathophysiology resulting into long COVID manifestations is still not completely validated.
Researchers have reported ‘immune dysregulation’ and ‘coagulation abnormalities’ are probable pathophysiological mechanism for long COVID. Some of the long COVID effects shown complete reversibility including post COVID lung fibrosis. Reboot system to restore immune dysregulation and recovery in long COVID is real concern. Long COVID symptoms cases are more health conscious and usually follows pattern of doctor shopping due to underestimation by family physicians either due to lack of suspicion or lack of knowledge regarding treatment protocol.
Source: Shital Patil, Sanika Narkar, Jayashree Dahiphale, Vipul Raka, Shubham Choudhari. and Gajanan Gondhali. Long COVID symptoms, pathophysiology and possible mechanisms: Still, we are learning! World Journal of Advanced Pharmaceutical and Medical Research, 2023, 04(01), 053–065. https://zealjournals.com/wjapmr/content/long-covid-symptoms-pathophysiology-and-possible-mechanisms-still-we-are-learning (Full text available as PDF file)

Cardiovascular Considerations in the Management of People with Suspected Long COVID

Abstract:

Approximately 15% of adult Canadians with SARS-CoV-2 infection develop lingering symptoms beyond 12 weeks post-acute infection, known as post-COVID condition or long COVID. Some of the commonly reported long COVID cardiovascular symptoms include fatigue, shortness of breath, chest pain, and palpitations. Suspected long-term cardiovascular complications of SARS-CoV-2 infection may present as a constellation of symptoms that can be challenging for clinicians to diagnose and treat.

When assessing patients with these symptoms, clinicians need to keep in mind Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), post-exertional malaise and post-exertional symptom exacerbation (PEM/PESE), cardiac dysautonomia such as Inappropriate Sinus Tachycardia (IST), and Postural Orthostatic Tachycardia Syndrome (POTS), and occasionally Mast Cell Activation Syndrome (MCAS).

This paper summarizes the globally evolving evidence around management of cardiac sequelae of long COVID. In addition, this review includes a Canadian perspective, consisting of a panel of expert opinions from experienced clinicians across Canada who have been involved in management of long COVID. The objective of this review is to offer some practical guidance to cardiologists and generalist clinicians regarding diagnostic and treatment approaches for adult patients with suspected long COVID who continue to experience unexplained cardiac symptoms.

Source: Quinn KL, Lam GY, Walsh JF, Bhéreur A, Brown AD, Chow CW, Christie Chung KY, Cowan J, Crampton N, Décary S, Falcone EL, Graves L, Gross DP, Hanneman K, Harvey PJ, Holmes S, Katz GM, Parhizgar P, Sharkawy A, Tran KC, Waserman S, Zannella VE, Cheung AM. Cardiovascular Considerations in the Management of People with Suspected Long COVID. Can J Cardiol. 2023 Apr 6:S0828-282X(23)00303-3. doi: 10.1016/j.cjca.2023.04.003. Epub ahead of print. PMID: 37030518. Quinn KL, Lam GY, Walsh JF, Bhéreur A, Brown AD, Chow CW, Christie Chung KY, Cowan J, Crampton N, Décary S, Falcone EL, Graves L, Gross DP, Hanneman K, Harvey PJ, Holmes S, Katz GM, Parhizgar P, Sharkawy A, Tran KC, Waserman S, Zannella VE, Cheung AM. Cardiovascular Considerations in the Management of People with Suspected Long COVID. Can J Cardiol. 2023 Apr 6:S0828-282X(23)00303-3. doi: 10.1016/j.cjca.2023.04.003. Epub ahead of print. PMID: 37030518. https://www.onlinecjc.ca/article/S0828-282X(23)00303-3/fulltext (Full text)

Heart Rate Variability and Salivary Biomarkers Differences between Fibromyalgia and Healthy Participants after an Exercise Fatigue Protocol: An Experimental Study

Abstract:

Previous studies showed that people with Fibromyalgia (FM) suffer from dysautonomia. Dysautonomia consists of persistent autonomic nervous system hyperactivity at rest and hyporeactivity during stressful situations. There is evidence that parameters reflecting the complex interplay between the autonomic nervous system and the cardiovascular system during exercise can provide significant prognostic information. Therefore, this study aimed to investigate the differences between people with FM and healthy controls on heart rate variability (HRV) and salivary parameters (such as flow, protein concentration, enzymatic activities of amylase, catalase and glutathione peroxidase) in two moments: (1) at baseline, and (2) after an exercise fatigue protocol.

A total of 37 participants, twenty-one were people with fibromyalgia and sixteen were healthy controls, participated in this cross-sectional study. HRV and salivary samples were collected before and after an exercise fatigue protocol. The fatigue protocol consisted of 20 repetitions of knee extensions and flexions of the dominant leg at 180 °·s-1 (degrees per second).

Significant differences were found in the HRV (stress index, LF and HF variables) and salivary biomarkers (with a higher concentration of salivary amylase in people with FM compared to healthy controls). Exercise acute effects on HRV showed that people with FM did not significantly react to exercise. However, significant differences between baseline and post-exercise on HRV significantly induce alteration on the HRV of healthy controls. Catalase significantly increased after exercise in healthy controls whereas salivary flow significantly increased in women with FM after an exercise fatigue protocol.

Our study suggests that a higher α-amylase activity and an impaired HRV can be used as possible biomarkers of fibromyalgia, associated with a reduction in salivary flow without changes in HRV and catalase activity after a fatigue exercise protocol. More studies should be carried out in the future to evaluate this hypothesis, in order to find diagnostic biomarkers in fibromyalgia.

Source: Costa AR, Freire A, Parraca JA, Silva V, Tomas-Carus P, Villafaina S. Heart Rate Variability and Salivary Biomarkers Differences between Fibromyalgia and Healthy Participants after an Exercise Fatigue Protocol: An Experimental Study. Diagnostics (Basel). 2022 Sep 14;12(9):2220. doi: 10.3390/diagnostics12092220. PMID: 36140620; PMCID: PMC9497903. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497903/ (Full text)

Left atrial longitudinal strain analysis in long Covid-19 syndrome

Abstract:

It is known that during the active course of Coronavirus disease 2019 (COVID-19), myocardial injury has an established pathological base, while its myocardial injury post-recovery is still obscured.

The aim of this study was to evaluate the longitudinal left atrial strain (LAS) using speckle tracking echocardiography (STE) in COVID-19-recovered patients who are previously healthy without confounder comorbidities to detect the potential cardiac dysfunction. 200 patients were prospectively included and examined 4?12 weeks after recovery from COVID-19 infection. 137 participants with comorbidities or previous history of cardiopulmonary disease were excluded from the analysis. A total of 63 patients who fulfilled our inclusion criteria were recruited into two groups according to the presence or absence of persistent dyspnoea and exercise intolerance. Clinical, laboratory & comprehensive echocardiographic examinations were done for all.

We observed that 31.7% of the previously healthy individuals developed dyspnoea & exercise intolerance post-COVID-19 infection. There were significantly impaired LAS parameters in the symptomatic group (LA reservoir, contraction & conduit strain, 22.7%, -6.6% & -16.1% versus 40%, -12%, and ? 27% in the asymptomatic group with P < 0.000).

Only LA reservoir strain and LA stiffness can independently predict the development of dyspnoea & exercise intolerance post-COVID-19 at cut-off values of 30% & 24.5% respectively with a sensitivity of 90% and a specificity of 91%, P < 0.001. These impaired LAS parameters could explain the developed symptoms post-COVID-19 recovery, even before disturbed conventional diastolic echocardiographic parameters. LAS parameters are significantly associated with the developed exertional dyspnoea & exercise intolerance post-COVID-19. LA reservoir strain & LA stiffness could provide a simple, easily available tool that points to early LV diastolic dysfunction and may direct the therapy in this subset of the population.

Source: ZeinElabdeen SG, Sherif A, Kandil NT, Altabib AMO, Abdelrashid MA. Left atrial longitudinal strain analysis in long Covid-19 syndrome. Int J Cardiovasc Imaging. 2023 Feb 14:1–6. doi: 10.1007/s10554-023-02801-5. Epub ahead of print. PMID: 36786877; PMCID: PMC9927057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927057/ (Full text)