Dysregulated platelet function in patients with postacute sequelae of COVID-19

Abstract:

Background: Postacute sequelae of COVID-19 (PASC), also referred to as “Long COVID”, sometimes follows COVID-19, a disease caused by SARS-CoV-2. Although SARS-CoV-2 is well known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Our objective was to evaluate platelet function and thrombotic potential in patients following recovery from SARS-CoV-2, but with clear symptoms of patients with PASC.

Methods: patients with PASC and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by light transmission aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions.

Results: A mild increase in platelet aggregation in patients with PASC through the thromboxane receptor was observed, and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in patients with PASC compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in patients with PASC. Plasma from patients with PASC was an extremely potent activator of washed, healthy platelets – a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals.

Conclusions: patients with PASC show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exist in patients with PASC to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.

Source: Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated platelet function in patients with postacute sequelae of COVID-19. Vasc Med. 2024 Feb 9:1358863X231224383. doi: 10.1177/1358863X231224383. Epub ahead of print. PMID: 38334067. https://pubmed.ncbi.nlm.nih.gov/38334067/

Persistent complement dysregulation with signs of thromboinflammation in active Long Covid

Abstract:

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid.

Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte–platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.

Source: Carlo Cervia-Hasler et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science383,eadg7942(2024). DOI: 10.1126/science.adg7942 https://www.science.org/doi/10.1126/science.adg7942 (Full text)

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis

Abstract:

Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects on quality of life and the economy are significant, thus warranting urgent attention to understand the pathophysiology. Herein we describe our perspective that Long COVID is a continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of disease and can cause or exacerbate other pathologies common in Long COVID, such as mast cell activation syndrome and dysautonomia.
Considering the SARS-CoV-2 spike protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, we predict that persistent spike protein will be a key mechanism driving the continued coagulopathy in Long COVID. We discuss several treatment targets to address the coagulopathy, and predict that (particularly early) treatment with combination anticoagulant and antiplatelet drugs will bring significant relief to many patients, supported by a case study. To help focus attention on such treatment targets, we propose Long COVID should be referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require urgent testing, especially as the world tries to co-exist with COVID-19.

Source: Kerr R, Carroll HA. Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis. Research Square; 2023. DOI: 10.21203/rs.3.rs-2939263/v1. https://assets.researchsquare.com/files/rs-2939263/v1_covered_7190a867-1475-4b57-b220-716a953649f1.pdf?c=1684433225 (Full text)

Long COVID: pathophysiological factors and abnormalities of coagulation

Abstract:

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction).

These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

Source: Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023 Jun;34(6):321-344. doi: 10.1016/j.tem.2023.03.002. Epub 2023 Apr 19. PMID: 37080828; PMCID: PMC10113134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113134/ (Full text)

Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae?

Abstract:

Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogenous symptoms across multiple organs systems. Here, we discuss the current evidence linking thrombo-inflammation to Post-acute sequelae of COVID-19 (PASC).

Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with increased thrombin generation capacity, and abnormalities in platelet counts in PASC. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and NETosis. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-Dimer in the circulation, as well as perfusion abnormalities in the lung and brain of Long COVID patients. Also, COVID-19 survivors suffer from an increased rate of arterial and venous thrombotic events.

We discuss three important, potentially intertwined hypotheses, that might contribute to thromboinflammation in Long COVID: Lasting structural changes, most prominently endothelial damage, caused during initial infection, a persistent viral reservoir, and immunopathology driven by a misguided immune system.

Lastly, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to Long COVID.

Source: Nicolai L, Kaiser R, Stark K. Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae? J Thromb Haemost. 2023 May 11:S1538-7836(23)00400-2. doi: 10.1016/j.jtha.2023.04.039. Epub ahead of print. PMID: 37178769; PMCID: PMC10174338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174338/ (Full text)

NETosis induction reflects COVID-19 severity and Long COVID: insights from a two-center patient cohort study in Israel

Abstract:

Background: COVID-19 severity and its late complications continue to be poorly understood. Neutrophil extracellular traps (NETs) form in acute COVID-19, likely contributing to morbidity and mortality. This study evaluated immunothrombosis markers in a comprehensive cohort of acute and recovered COVID-19 patients, including the association of NETs with LongCOVID.

Methods: One-hundred-seventy-seven patients were recruited from clinical cohorts at two Israeli centers: acute COVID-19 (mild/moderate, severe/critical), convalescent COVID-19 (recovered and Long COVID), along with 54 non-COVID controls. Plasma was examined for markers of platelet activation, coagulation, and NETs. Ex vivo NETosis induction capability was evaluated after neutrophil incubation with patient plasma.

Results: Soluble P-selectin, Factor VIII, von Willebrand factor, and platelet factor 4 were significantly elevated in COVID-19 patients versus controls. Myeloperoxidase (MPO)-DNA complex levels were increased only in severe COVID-19 and did not differentiate between COVID-19 severities or correlate with thrombotic markers. NETosis induction levels strongly correlated with illness severity/duration, platelet activation markers, and coagulation factors, and were significantly reduced upon dexamethasone treatment and recovery. Long COVID patients maintained higher NETosis induction, but not NET fragments, compared to recovered convalescent patients.

Conclusions: Increased NETosis induction can be detected in Long COVID patients. NETosis induction appears to be a more sensitive NET measurement than MPO-DNA levels in COVID-19, differentiating between disease severity and Long COVID patients. Ongoing NETosis induction capability in Long COVID may provide insights into pathogenesis and serve as a surrogate marker for persistent pathology. This study emphasizes the need to explore neutrophil-targeted therapies in acute and chronic COVID-19.

Source: Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, Pri-Or E, Perek S, Raz-Pasteur A, Lejbkowicz I, Cohen-Matsliah SI, Almog R, Chen N, Kurd R, Jarjou’i A, Rokach A, Ben-Chetrit E, Schroeder A, Caulin AF, Yost CC, Schiffman JD, Goldfeder M, Martinod K. NETosis induction reflects COVID-19 severity and Long COVID: insights from a two-center patient cohort study in Israel. J Thromb Haemost. 2023 Apr 11:S1538-7836(23)00274-X. doi: 10.1016/j.jtha.2023.02.033. Epub ahead of print. PMID: 37054916; PMCID: PMC10088279. https://www.jthjournal.org/article/S1538-7836(23)00274-X/fulltext (Full text available as PDF file)

Long COVID: pathophysiological factors and abnormalities of coagulation

Abstract:

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

Source: Simone Turner, Asad Khan, David Putrino, Ashley Woodcock, Douglas B. Kell, and Etheresia Pretorius.  Long COVID: pathophysiological factors and abnormalities of coagulation. Trends in Endocrinology & Metabolism. April 19, 2023. https://www.sciencedirect.com/science/article/pii/S1043276023000553 (Full text)

Treatment of Long COVID symptoms with triple anticoagulant therapy

Abstract:

Background: Fibrin(ogen) amyloid microclots and platelet hyperactivation are key pathological findings in patients with acute COVID-19 infection and also in those with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). These pathologies may represent a suitable target for pharmacological treatment of Long COVID.

Methods: Here we report on the symptoms displayed by a cohort of 91 South African Long COVID patients at baseline and after a clinician-initiated anticoagulant regime was completed. For laboratory analysis, patients provided a blood sample before and after treatment. Fibrinaloid microclot presence was studied by adding thioflavin T to platelet poor plasma (PPP), whilst platelet hyperactivation was studied using two platelet markers- PAC1 and CD62P (P-selectin). The anticoagulant regime included dual antiplatelet therapy (DAPT- Clopidogrel 75mg + Aspirin 75mg) once a day, and a direct oral anticoagulant (DOAC- Apixaban) 5mg twice a day. A proton pump inhibitor (PPI) pantoprazole 40 mg/day was also prescribed for gastric protection. Each of the treated cases reported their main Long COVID symptoms, and whether their symptoms resolved following treatment or not.

Results: In our cohort a most participants did not report any comorbidities before acute COVID-19 infection. Hypertension and dyslipidaemia were the commonest underlying illnesses, whilst the most commonly reported Long COVID symptoms included fatigue, cognitive dysfunction, shortness of breath, and joint and muscle pains. Following completion of treatment, each of the different symptoms resolved in the majority of patients. This was also reflected in the laboratory analysis, where a decrease in the severity of fibrin amyloid microclotting and the degree of platelet pathology was noted. No serious adverse bleeding events were reported.

Conclusions: Fibrin amyloid microclots, platelet hyperactivation/ aggregation, and  widespread endothelialitis inhibit the transport of oxygen at a capillary/cellular level. This provides a ready explanation for the symptoms of Long COVID. By normalizing the failed clotting physiology and reversal of the endothelialitis, triple anticoagulant therapy represents a promising treatment option that appears to be highly efficacious, and warrants controlled clinical studies. We caution that such a regime must only be followed under expert medical supervision in view of the risk of  bleeding.

Source: Gert J Laubscher, M Asad Khan, Chantelle Venter, Etheresia Pretorius et al. Treatment of Long COVID symptoms with triple anticoagulant therapy, 21 March 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2697680/v1 (Full text)

Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses

Abstract:

ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS.

Since Long COVID is characterized by significant vascular pathology – including endothelial dysfunction, coagulopathy, and vascular dysregulation – the question of whether or not the same biological abnormalities are of significance in ME/CFS arises.

Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms.

Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens.

Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system.

Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes.

Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.

Source: Jean M. Nunes, Douglas B. Kell, Etheresia Pretorius. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood reviews, 20 March 2023, 101075 [Epub ahead of print]  https://www.sciencedirect.com/science/article/pii/S0268960X2300036X (Full text)

Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning

Abstract:

Background: Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as “Long-COVID”. A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID.

Methods: A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase.

Results: Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID.

Conclusions: Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.

Source: Patel MA, Knauer MJ, Nicholson M, Daley M, Van Nynatten LR, Cepinskas G, Fraser DD. Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning. Mol Med. 2023 Feb 21;29(1):26. doi: 10.1186/s10020-023-00610-z. PMID: 36809921; PMCID: PMC9942653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942653/ (Full text)