The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in functioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative biomarker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria-a process that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few participate in social activities.

Main body: Recent studies have reported promising quantifiable differences in the biochemical and electrophysiological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities and specificities-demonstrating potential development of an accessible and relatively non-invasive diagnostic biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and certain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker are yet to be explored.

Conclusion: Different biochemical and electrophysiological properties which differentiate ME/CFS have been identified across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. However, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.

Source: Clarke KSP, Kingdon CC, Hughes MP, Lacerda EM, Lewis R, Kruchek EJ, Dorey RA, Labeed FH. The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med. 2025 Feb 4;23(1):149. doi: 10.1186/s12967-025-06146-6. PMID: 39905423.  https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-025-06146-6 (Full text)

Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing

Abstract:

Introduction: While the diagnosis of postural orthostatic tachycardia syndrome (POTS) is based on heart rate (HR) and blood pressure (BP) criteria, the pathophysiology of POTS is not fully understood as multiple pathophysiological mechanisms have been recognized. Also, cardiac function, being dependent on preload, afterload, contractility, and HR, has not been properly studied. Preload and contractility changes can be inferred from stroke volume index (SVI) changes during a tilt test. Afterload plays a minor role in POTS as a normal BP response is a prerequisite for POTS. Therefore, we analyzed the HR-SVI relation during a tilt test in myalgic encephalomyelitis (ME/CFS) patients with POTS and compared the data with ME/CFS patients with a normal HR-BP response and with that of healthy controls (HC).

Material and Methods: In ME/CFS patients with either POTS (n = 233) or a normal HR-BP response (n = 507) and healthy controls (n = 48), we measured SVI (by suprasternal echo), HR, and BP during the tilt.

Results: In all ME/CFS patients, the decrease in SVI was larger compared to HC. In patients with a normal HR-BP response and in POTS patients with a HR increase between 30-39 bpm, there was an inverse relationship between the HR increase and SVI decrease during the tilt, compatible with increased venous pooling. In POTS patients with a HR increase ≥40 bpm, this inverse relation was lost, and SVI changes were significantly less compared to POTS patients with a HR increase between 30-39 bpm, suggestive of a hyperadrenergic response.

Conclusions: In ME/CFS patients with POTS, two different hemodynamic profiles can be observed: in patients with a limited HR increase, mainly increased venous pooling is observed, while in patients with a large (≥ 40 bpm) HR increase the data are suggestive of a hyperadrenergic response. These two different profiles may have different therapeutic implications.

Source: van Campen CLMC, Rowe PC, Visser FC. Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing. J Clin Med. 2024 Dec 18;13(24):7726. doi: 10.3390/jcm13247726. PMID: 39768649. https://www.mdpi.com/2077-0383/13/24/7726 (Full text)

The Cardiac Output-Cerebral Blood Flow Relationship Is Abnormal in Most Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with a Normal Heart Rate and Blood Pressure Response During a Tilt Test

Abstract:

Introduction: Orthostatic intolerance is highly prevalent in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and is caused by an abnormal reduction in cerebral blood flow (CBF). In healthy controls (HCs), the regulation of CBF is complex and cardiac output (CO) is an important determinant of CBF: a review showed that a 30% reduction in CO results in a 10% reduction in CBF. In previous and separate ME/CFS studies, we showed that CO and CBF decreased to a similar extent during tilt testing.

The aim of the study: to test the relationship between CBF and CO, which seems to be abnormal in ME/CFS patients and is different from that in HCs.

Methods: In this retrospective study we analyzed this relationship in a large group of patients. To compare the patient data with those of HCs, we focused on patients with a normal heart rate (HR) and blood pressure (BP) response to upright tilt. Also, the influence of clinical data was analyzed. A total of 534 ME/CFS patients and 49 HCs underwent tilt testing with measurements of HR, BP, CBF, CO, and end-tidal PCO2. To measure CBF, extracranial Doppler flow velocity and vessel diameters were obtained using a GE echo system. The same device was used to measure suprasternal aortic flow velocities. End-tidal PCO2 was recorded using a Nonin Lifesense device.

Results: In 46 (9%) patients, CO and CBF changes were in the normal range for HCs, and in 488 (91%) an abnormal CO and CBF reduction was found. In patients with abnormal CO and CBF reductions, the slope of the regression line of CO versus CBF reduction was almost 1. The multiple regression analysis of the latter group showed that the CO reduction for the most part predicted the CBF reduction, with a limited role for the PETCO2 reduction.

Conclusions: Two different patient groups with a normal HR and BP response during the tilt were identified: those with a CO and CBF in the normal range for HCs and those with an abnormal CO and CBF reduction during the tilt (91% of patients). In the latter group of patients, an almost 1:1 relationship between the CO and CBF reduction suggests the absence of compensatory vasodilation in the cerebral vasculature. This might indicate endothelial dysfunction in most ME/CFS patients and may have clinical and therapeutic implications.

Source: van Campen CLMC, Verheugt FWA, Rowe PC, Visser FC. The Cardiac Output-Cerebral Blood Flow Relationship Is Abnormal in Most Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with a Normal Heart Rate and Blood Pressure Response During a Tilt Test. Healthcare (Basel). 2024 Dec 20;12(24):2566. doi: 10.3390/healthcare12242566. PMID: 39765993. https://www.mdpi.com/2227-9032/12/24/2566 (Full text)

Immunometabolic changes and potential biomarkers in CFS peripheral immune cells revealed by single-cell RNA sequencing

Abstract:

The pathogenesis of Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remains unclear, though increasing evidence suggests inflammatory processes play key roles. In this study, single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) was used to decipher the immunometabolic profile in 4 ME/CFS patients and 4 heathy controls.

We analyzed changes in the composition of major PBMC subpopulations and observed an increased frequency of total T cells and a significant reduction in NKs, monocytes, cDCs and pDCs. Further investigation revealed even more complex changes in the proportions of cell subpopulations within each subpopulation. Gene expression patterns revealed upregulated transcription factors related to immune regulation, as well as genes associated with viral infections and neurodegenerative diseases.

CD4+ and CD8+ T cells in ME/CFS patients show different differentiation states and altered trajectories, indicating a possible suppression of differentiation. Memory B cells in ME/CFS patients are found early in the pseudotime, indicating a unique subtype specific to ME/CFS, with increased differentiation to plasma cells suggesting B cell overactivity. NK cells in ME/CFS patients exhibit reduced cytotoxicity and impaired responses, with reduced expression of perforin and CD107a upon stimulation. Pseudotime analysis showed abnormal development of adaptive immune cells and an enhanced cell-cell communication network converging on monocytes in particular.

Our analysis also identified the estrogen-related receptor alpha (ESRRA)-APP-CD74 signaling pathway as a potential biomarker for ME/CFS in peripheral blood. In addition, data from the GSE214284 database confirmed higher ESRRA expression in the monocyte cell types of male ME/CFS patients. These results suggest a link between immune and neurological symptoms.

The results support a disease model of immune dysfunction ranging from autoimmunity to immunodeficiency and point to amyloidotic neurodegenerative signaling pathways in the pathogenesis of ME/CFS. While the study provides important insights, limitations include the modest sample size and the evaluation of peripheral blood only.

These findings highlight potential targets for diagnostic biomarkers and therapeutic interventions. Further research is needed to validate these biomarkers and explore their clinical applications in managing ME/CFS.

Source: Sun Y, Zhang Z, Qiao Q, Zou Y, Wang L, Wang T, Lou B, Li G, Xu M, Wang Y, Zhang Z, Hou X, Chen L, Zhao R. Immunometabolic changes and potential biomarkers in CFS peripheral immune cells revealed by single-cell RNA sequencing. J Transl Med. 2024 Oct 11;22(1):925. doi: 10.1186/s12967-024-05710-w. PMID: 39394558. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05710-w (Full text)

Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function

Abstract:

This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs).

Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts.

Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS.

This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.

Source: Elahi Shokrollah , Rezaeifar Maryam , Osman Mohammed , Shahbaz Shima. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Frontiers in Immunology, Vol 15, 2024. DOI=10.3389/fimmu.2024.1443363. ISSN=1664-3224. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1443363 (Full text)

 

Gut Microbiome Wellness Index 2 enhances health status prediction from gut microbiome taxonomic profiles

Abstract:

Recent advancements in translational gut microbiome research have revealed its crucial role in shaping predictive healthcare applications. Herein, we introduce the Gut Microbiome Wellness Index 2 (GMWI2), an enhanced version of our original GMWI prototype, designed as a standardized disease-agnostic health status indicator based on gut microbiome taxonomic profiles.

Our analysis involves pooling existing 8069 stool shotgun metagenomes from 54 published studies across a global demographic landscape (spanning 26 countries and six continents) to identify gut taxonomic signals linked to disease presence or absence. GMWI2 achieves a cross-validation balanced accuracy of 80% in distinguishing healthy (no disease) from non-healthy (diseased) individuals and surpasses 90% accuracy for samples with higher confidence (i.e., outside the “reject option”).

This performance exceeds that of the original GMWI model and traditional species-level α-diversity indices, indicating a more robust gut microbiome signature for differentiating between healthy and non-healthy phenotypes across multiple diseases. When assessed through inter-study validation and external validation cohorts, GMWI2 maintains an average accuracy of nearly 75%.

Furthermore, by reevaluating previously published datasets, GMWI2 offers new insights into the effects of diet, antibiotic exposure, and fecal microbiota transplantation on gut health. Available as an open-source command-line tool, GMWI2 represents a timely, pivotal resource for evaluating health using an individual’s unique gut microbial composition.

Source: Chang, D., Gupta, V.K., Hur, B. et al. Gut Microbiome Wellness Index 2 enhances health status prediction from gut microbiome taxonomic profiles. Nat Commun 15, 7447 (2024). https://doi.org/10.1038/s41467-024-51651-9 https://www.nature.com/articles/s41467-024-51651-9 (Full text)

Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic syndromes of unknown etiology, accompanied by numerous symptoms affecting neurological and physical conditions. Despite frequent revisions of the diagnostic criteria, clinical practice guidelines are often outdated, leading to underdiagnosis and ineffective treatment. Our aim was to identify microRNA (miRNA) biomarkers implicated in pathological mechanisms underlying these diseases.
A comprehensive literature review using publicly accessible databases was conducted. Interesting miRNAs were extracted from relevant publications on ME/CFS and/or FM, and were then linked to pathophysiological processes possibly manifesting these chronic diseases. Dysregulated miRNAs in ME/CFS and FM may serve as promising biomarkers for these diseases.
Key identified miRNAs, such as miR-29c, miR-99b, miR-128, miR-374b, and miR-766, were frequently mentioned for their roles in immune response, mitochondrial dysfunction, oxidative stress, and central sensitization, while miR-23a, miR-103, miR-152, and miR-320 were implicated in multiple crucial pathological processes for FM and/or ME/CFS.
In summary, both ME/CFS and FM seem to share many dysregulated biological or molecular processes, which may contribute to their commonly shared symptoms. This miRNA-based approach offers new angles for discovering molecular markers urgently needed for early diagnosis or therapeutics to tackle the pathology of these medically unexplained chronic diseases.
Source: Tsamou M, Kremers FAC, Samaritakis KA, Roggen EL. Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. International Journal of Molecular Sciences. 2024; 25(17):9551. https://doi.org/10.3390/ijms25179551 https://www.mdpi.com/1422-0067/25/17/9551 (Full text)

Replicated blood-based biomarkers for Myalgic Encephalomyelitis not explicable by inactivity

Abstract:

Myalgic Encephalomyelitis (ME; sometimes referred to as chronic fatigue syndrome) is a relatively common and female-biased disease of unknown pathogenesis that profoundly decreases patients’ health-related quality-of-life. ME diagnosis is hindered by the absence of robustly-defined and specific biomarkers that are easily measured from available sources such as blood, and unaffected by ME patients’ low level of physical activity.

Previous studies of blood biomarkers have not yielded replicated results, perhaps due to low study sample sizes (n<100). Here, we use UK Biobank (UKB) data for up to 1,455 ME cases and 131,303 population controls to discover hundreds of molecular and cellular blood traits that differ significantly between cases and controls. Importantly, 116 of these traits are replicated, as they are significant for both female and male cohorts.

Our analysis used semi-parametric efficient estimators, an initial Super Learner fit followed by a one-step correction, three types of mediators, and natural direct and indirect estimands, to decompose the average effect of ME status on molecular and cellular traits. Strikingly, these trait differences cannot be explained by ME cases’ restricted activity.

Of 3,237 traits considered, ME status had a significant effect on only one, via the “Duration of walk” (UKB field 874) mediator. By contrast, ME status had a significant direct effect on 290 traits (9%). As expected, these effects became more significant with increased stringency of case and control definition.

Significant female and male traits were indicative of chronic inflammation, insulin resistance and liver disease. Individually, significant effects on blood traits, however, were not sufficient to cleanly distinguish cases from controls. Nevertheless, their large number, lack of sex-bias, and strong significance, despite the ‘healthy volunteer’ selection bias of UKB participants, keep alive the future ambition of a blood-based biomarker panel for accurate ME diagnosis.

Source: Sjoerd V Beentjes, Julia Kaczmarczyk, Amanda Cassar, Gemma Louise Samms, Nima S Hejazi, Ava Khamseh, Chris P Ponting. Replicated blood-based biomarkers for Myalgic Encephalomyelitis not explicable by inactivity. medRxiv 2024.08.26.24312606; doi: https://doi.org/10.1101/2024.08.26.24312606 https://www.medrxiv.org/content/10.1101/2024.08.26.24312606v1 (Full text available as PDF file)

Fast Targeted Metabolomics for Analyzing Metabolic Diversity of Bacterial Indole Derivatives in ME/CFS Gut Microbiome

Abstract:

Disruptions in microbial metabolite interactions due to gut microbiome dysbiosis and metabolomic shifts may contribute to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and other immune-related conditions. The aryl hydrocarbon receptor (AhR), activated upon binding various tryptophan metabolites, modulates host immune responses. This study investigates whether the metabolic diversity-the concentration distribution-of bacterial indole pathway metabolites can differentiate bacterial strains and classify ME/CFS samples.

A fast targeted liquid chromatography-parallel reaction monitoring method at a rate of 4 minutes per sample was developed for large-scale analysis. This method revealed significant metabolic differences in indole derivatives among B. uniformis strains cultured from human isolates. Principal component analysis identified two major components (PC1, 68.9%; PC2, 18.7%), accounting for 87.6% of the variance and distinguishing two distinct B. uniformis clusters. The metabolic difference between clusters was particularly evident in the relative contributions of indole-3-acrylate and indole-3-aldehyde.

We further measured concentration distributions of indole derivatives in ME/CFS by analyzing fecal samples from 10 patients and 10 healthy controls using the fast targeted metabolomics method. An AdaBoost-LOOCV model achieved moderate classification success with a mean LOOCV accuracy of 0.65 (Control: precision of 0.67, recall of 0.60, F1-score of 0.63; ME/CFS: precision of 0.64, recall of 0.7000, F1-score of 0.67).

These results suggest that the metabolic diversity of indole derivatives from tryptophan degradation, facilitated by the fast targeted metabolomics and machine learning, is a potential biomarker for differentiating bacterial strains and classifying ME/CFS samples.

Mass spectrometry datasets are accessible at the National Metabolomics Data Repository (ST002308, DOI: 10.21228/M8G13Q; ST003344, DOI: 10.21228/M8RJ9N; ST003346, DOI: 10.21228/M8RJ9N).

Source: Tian H, Wang L, Aiken E, Ortega RJV, Hardy R, Placek L, Kozhaya L, Unutmaz D, Oh J, Yao X. Fast Targeted Metabolomics for Analyzing Metabolic Diversity of Bacterial Indole Derivatives in ME/CFS Gut Microbiome. bioRxiv [Preprint]. 2024 Jul 29:2024.07.29.605643. doi: 10.1101/2024.07.29.605643. PMID: 39131327; PMCID: PMC11312560. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312560/ (Full text)

Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disorder characterized by heterogeneous symptoms, which lack specific biomarkers for its diagnosis. This study aimed to investigate plasma neurofilament light chain (NfL) levels as a potential biomarker for ME/CFS and explore associations with cognitive, autonomic, and neuropathic symptoms.

Here, 67 ME/CFS patients and 43 healthy controls (HCs) underwent comprehensive assessments, including neuropsychological evaluation, autonomic nervous system (ANS) testing, and plasma NfL level analysis. ME/CFS patients exhibited significantly higher plasma NfL levels compared to HC (F = 4.30, p < 0.05). Correlations were observed between NfL levels and cognitive impairment, particularly in visuospatial perception (r = -0.42; p ≤ 0.001), verbal memory (r = -0.35, p ≤ 0.005), and visual memory (r = -0.26; p < 0.05) in ME/CFS. Additionally, higher NfL levels were associated with worsened autonomic dysfunction in these patients, specifically in parasympathetic function (F = 9.48, p ≤ 0.003).

In ME/CFS patients, NfL levels explained up to 17.2% of the results in cognitive tests. Unlike ME/CFS, in HC, NfL levels did not predict cognitive performance. Elevated plasma NfL levels in ME/CFS patients reflect neuroaxonal damage, contributing to cognitive dysfunction and autonomic impairment.

These findings support the potential role of NfL as a biomarker for neurological dysfunction in ME/CFS. Further research is warranted to elucidate underlying mechanisms and clinical implications.

Source: Azcue N, Tijero-Merino B, Acera M, Pérez-Garay R, Fernández-Valle T, Ayo-Mentxakatorre N, Ruiz-López M, Lafuente JV, Gómez Esteban JC, Del Pino R. Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomedicines. 2024 Jul 11;12(7):1539. doi: 10.3390/biomedicines12071539. PMID: 39062112; PMCID: PMC11274366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274366/ (Full text)