Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neuro-cognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between Arterial Pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age=24.1 years) and 15 ME/CFS patients (mean age=21.8 years). All ME/CFS patients had postural tachycardia syndrome (POTS).

A 10-minute 60⁰ head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P <0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS vs. control. In ME/CFS, HUT significantly decreased CBV compared to control (-22.5% vs -8.7%, p<0.005).

To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n=4 N-back during HUT in ME/CFS similar to control (ME/CFS=38.5±5.5 vs. ME/CFS+PE= 65.6±5.7 vs. Control 56.9±7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. While CO2 and Acetazolamide had no effect on PhSI in ME/CFS, PE caused a significant reduction in PhSI (ME/CFS=0.80±0.03 vs ME/CFS+PE= 0.69±0.04, p< 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in ME/CFS patients, perhaps related to improved neurovascular coupling, cerebral autoregulation and maintenance of CBV.

Source: Medow MS, Stewart JM. Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance. Am J Physiol Regul Integr Comp Physiol. 2024 Apr 29. doi: 10.1152/ajpregu.00071.2024. Epub ahead of print. PMID: 38682242. https://journals.physiology.org/doi/abs/10.1152/ajpregu.00071.2024 (Full text available as PDF file)

Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning

Abstract:

Background: Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.

Methods: We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.

Results: Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients’ Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.

Conclusion: Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients’ cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions.

Source: Benito-León J, Lapeña J, García-Vasco L, Cuevas C, Viloria-Porto J, Calvo-Córdoba A, Arrieta-Ortubay E, Ruiz-Ruigómez M, Sánchez-Sánchez C, García-Cena C. Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning. Am J Med. 2024 Apr 5:S0002-9343(24)00217-1. doi: 10.1016/j.amjmed.2024.04.004. Epub ahead of print. PMID: 38583751. https://pubmed.ncbi.nlm.nih.gov/38583751/

Patients with Fibromyalgia Scored Worse in Memory, Attention, Cognitive Function

Press release:

A cross-sectional study demonstrated significant impairments in attention, memory, and higher cognitive functions among a cohort of patients with fibromyalgia and rheumatoid arthritis (RA), according to a study published in Psychology Research and Behavior Management.1

Investigators believe deficits in the fibromyalgia cohort could be explained by secondary symptoms coupled with more severe pain. A cognitive screening could help curate personalized treatment plans to improve the quality of life among patients with RA and fibromyalgia.

“Research directly comparing cognitive performance between patients with fibromyalgia and RA is still scarce. Some studies suggested deficits of similar magnitude in both patient groups,” wrote a group of investigators led by Carmen María Galvez Sánchez, PhD, associated with the Department of Personality, Evaluation and Psychological Treatment at the University of Murcia, Spain. “In response to this exigency, there is a requisite for the evaluation of cognitive impairments in individuals with chronic pain, aiming to formulate and implement interventions rooted in neuropsychological training. This approach is intended to ameliorate cognitive performance and mitigate its consequential impact on health-related quality of life.”

In certain patients with fibromyalgia, cognitive impairment was linked to clinical pain severity, depression, fatigue, insomnia, and anxiety. Similarly, these were also reported in patients with RA, although pain and emotional symptoms within the fibromyalgia cohort.2 Symptoms of fibromyalgia and RA often include depression, fatigue, insomnia, and cognitive issues.

Investigators analyzed the performance in cognitive domains between patients with RA and fibromyalgia using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Questionnaire scores were combined to determine the symptom severity factor, which was used as a control variable within the group comparisons.

A total of 64 patients with fibromyalgia, 34 patients with RA, and 32 healthy controls were included in the study. All patients were female.

Without controlling for the severity of symptoms, patients with either fibromyalgia or RA performed worse when compared with controls in terms of cognitive domains including verbal memory, visual memory, and strategic planning.

Additionally, over deficits were observed in the fibromyalgia cohort compared with RA. Patients with fibromyalgia reported more severe symptoms, such as pain intensity, total pain, anxiety, depression, insomnia, and fatigue, compared with patients with RA. After controlling for symptom severity a significant proportion of cognitive test, a large proportion of cognitive test parameters were not different between rheumatologic cohorts.

Limitations included the lack of information regarding the influence of psychotropic and pain medication on cognitive performance among rheumatic patients. Although the limitation could have been determined using subgroup analysis, the current sample size was too small to form these subgroups.

Further, no data on treatment and disease activity were collected in the RA subgroup and the analysis of the effects of clinical symptoms on cognitive performance was limited. Additionally, not all psychological factors that may impact cognition were assessed in the analysis. The generalizability of findings may be hindered as only women were included in the analysis and the recruitment of subjects was not randomly performed. Lastly, the RA and fibromyalgia diagnoses were performed by different rheumatologists, which may have introduced selection bias.

“Based on the present results, it is recommended that screening for cognitive deficits be part of routine diagnostics for fibromyalgia and RA, which may help to guide the design of personalized interventions to optimize cognitive performance of patients with fibromyalgia and RA,” investigators concluded.

Source: Lana Pine. HCP Live.

Cognition and Memory after Covid-19 in a Large Community Sample

Abstract:

Background: Cognitive symptoms after coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are well-recognized. Whether objectively measurable cognitive deficits exist and how long they persist are unclear.

Methods: We invited 800,000 adults in a study in England to complete an online assessment of cognitive function. We estimated a global cognitive score across eight tasks. We hypothesized that participants with persistent symptoms (lasting ≥12 weeks) after infection onset would have objectively measurable global cognitive deficits and that impairments in executive functioning and memory would be observed in such participants, especially in those who reported recent poor memory or difficulty thinking or concentrating (“brain fog”).

Results: Of the 141,583 participants who started the online cognitive assessment, 112,964 completed it. In a multiple regression analysis, participants who had recovered from Covid-19 in whom symptoms had resolved in less than 4 weeks or at least 12 weeks had similar small deficits in global cognition as compared with those in the no-Covid-19 group, who had not been infected with SARS-CoV-2 or had unconfirmed infection (-0.23 SD [95% confidence interval {CI}, -0.33 to -0.13] and -0.24 SD [95% CI, -0.36 to -0.12], respectively); larger deficits as compared with the no-Covid-19 group were seen in participants with unresolved persistent symptoms (-0.42 SD; 95% CI, -0.53 to -0.31). Larger deficits were seen in participants who had SARS-CoV-2 infection during periods in which the original virus or the B.1.1.7 variant was predominant than in those infected with later variants (e.g., -0.17 SD for the B.1.1.7 variant vs. the B.1.1.529 variant; 95% CI, -0.20 to -0.13) and in participants who had been hospitalized than in those who had not been hospitalized (e.g., intensive care unit admission, -0.35 SD; 95% CI, -0.49 to -0.20). Results of the analyses were similar to those of propensity-score-matching analyses. In a comparison of the group that had unresolved persistent symptoms with the no-Covid-19 group, memory, reasoning, and executive function tasks were associated with the largest deficits (-0.33 to -0.20 SD); these tasks correlated weakly with recent symptoms, including poor memory and brain fog. No adverse events were reported.

Conclusions: Participants with resolved persistent symptoms after Covid-19 had objectively measured cognitive function similar to that in participants with shorter-duration symptoms, although short-duration Covid-19 was still associated with small cognitive deficits after recovery. Longer-term persistence of cognitive deficits and any clinical implications remain uncertain. (Funded by the National Institute for Health and Care Research and others.).

Source: Hampshire A, Azor A, Atchison C, Trender W, Hellyer PJ, Giunchiglia V, Husain M, Cooke GS, Cooper E, Lound A, Donnelly CA, Chadeau-Hyam M, Ward H, Elliott P. Cognition and Memory after Covid-19 in a Large Community Sample. N Engl J Med. 2024 Feb 29;390(9):806-818. doi: 10.1056/NEJMoa2311330. PMID: 38416429. https://www.nejm.org/doi/10.1056/NEJMoa2311330 (Full text)

Cognitive domains affected post-COVID-19; a systematic review and meta-analysis

Abstract:

Background and purpose: This review aims to characterize the pattern of post-COVID-19 cognitive impairment, allowing better prediction of impact on daily function to inform clinical management and rehabilitation.

Methods: A systematic review and meta-analysis of neurocognitive sequelae following COVID-19 was conducted, following PRISMA-S guidelines. Studies were included if they reported domain-specific cognitive assessment in patients with COVID-19 at >4 weeks post-infection. Studies were deemed high-quality if they had >40 participants, utilized healthy controls, had low attrition rates and mitigated for confounders.

Results: Five of the seven primary Diagnostic and Statistical Manual of Mental Disorders (DSM-5) cognitive domains were assessed by enough high-quality studies to facilitate meta-analysis. Medium effect sizes indicating impairment in patients post-COVID-19 versus controls were seen across executive function (standardised mean difference (SMD) -0.45), learning and memory (SMD -0.55), complex attention (SMD -0.54) and language (SMD -0.54), with perceptual motor function appearing to be impacted to a greater degree (SMD -0.70). A narrative synthesis of the 56 low-quality studies also suggested no obvious pattern of impairment.

Conclusions: This review found moderate impairments across multiple domains of cognition in patients post-COVID-19, with no specific pattern. The reported literature was significantly heterogeneous, with a wide variety of cognitive tasks, small sample sizes and disparate initial disease severities limiting interpretability. The finding of consistent impairment across a range of cognitive tasks suggests broad, as opposed to domain-specific, brain dysfunction. Future studies should utilize a harmonized test battery to facilitate inter-study comparisons, whilst also accounting for the interactions between COVID-19, neurological sequelae and mental health, the interplay between which might explain cognitive impairment.

Source: Fanshawe JB, Sargent BF, Badenoch JB, Saini A, Watson CJ, Pokrovskaya A, Aniwattanapong D, Conti I, Nye C, Burchill E, Hussain ZU, Said K, Kuhoga E, Tharmaratnam K, Pendered S, Mbwele B, Taquet M, Wood GK, Rogers JP, Hampshire A, Carson A, David AS, Michael BD, Nicholson TR, Paddick SM, Leek CE. Cognitive domains affected post-COVID-19; a systematic review and meta-analysis. Eur J Neurol. 2024 Feb 20:e16181. doi: 10.1111/ene.16181. Epub ahead of print. PMID: 38375608. https://onlinelibrary.wiley.com/doi/10.1111/ene.16181 (Full text)

Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease

Abstract:

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation.

Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson’s disease, COVID, traumatic brain injury, and Alzheimer’s disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them.

Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical “psychiatric medications” are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.

Source: Khalid A. Hanafy, Tudor G. Jovin. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front. Immunol., 17 January 2024, Sec. Inflammation, Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1332776 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1332776/full (Full text)

Exploring the neurocognitive consequences of post-exertional malaise in myalgic encephalomyelitis

Background and aims:

Myalgic encephalomyelitis (ME) is a complex, debilitating and heterogeneous disorder. It affects over 500,000 people in Canada but remains poorly understood. People are affected with multi-systemic symptoms such as fatigue that is not alleviated by rest, pain, cognitive impairment and post-exertional malaise (PEM), which is considered as the hallmark symptom of ME. PEM is triggered by minimal mental or physical effort and exacerbates other symptoms. Our aim was to measure how individuals’ cognition can be impacted by the induction of PEM, and investigate the difference in cognitive response.

Section snippets:

Methods
A prospective cohort of people with ME (n = 42) and matched healthy controls (n = 15) was recruited and subjected to PEM induction through a 90-minutes mechanical arm stimulation. BrainCheck test (BrainCheck, Inc., TX, USA) was used at baseline (T0) and after 90 minutes of stimulation to evaluate six cognitive domains for which each participant received a score and a population percentile based on their performance.

Results
Comparison between both groups was significant (p < 0.05) at T90, but not at T0, in four out of six cognitive domains. We then classified our ME cohort in three clusters by k-means method based on the Δ percentile (T90-T0) for each cognitive task. This stratification allowed us to notice how some cognitive domains seem more affected depending on the cluster, namely memory and attention.

Conclusions
These results showed the impact of PEM on the disturbance of cognition in the context of ME as well as the variability of cognitive domains affected in people with ME.

Source: Corinne Leveau, Iurie Caraus, Anita Franco, Alain Moreau. Exploring the neurocognitive consequences of post-exertional malaise in myalgic encephalomyelitis. Journal of the Neurological Sciences, Volume 455, Supplement, December 2023, 122590. https://www.sciencedirect.com/science/article/abs/pii/S0022510X23020518

 

Characterization of neurocognitive deficits in patients with post-COVID-19 syndrome: persistence, patients’ complaints, and clinical predictors.

Abstract:

Introduction: Cognitive symptoms persisting beyond 3 months following COVID-19 present a considerable disease burden. We aimed to establish a domain-specific cognitive profile of post-COVID-19 syndrome (PCS). We examined the deficits’ persistence, relationships with subjective cognitive complaints, and clinical variables, to identify the most relevant cognitive deficits and their predictors.

Methods: This cross-sectional study examined cognitive performance and patient-reported and clinical predictors of cognitive deficits in PCS patients (n = 282) and socio-demographically comparable healthy controls (n = 52).

Results: On the Oxford Cognitive Screen-Plus, the patient group scored significantly lower in delayed verbal memory, attention, and executive functioning than the healthy group. In each affected domain, 10 to 20% of patients performed more than 1.5 SD below the control mean. Delayed memory was particularly affected, with a small effect of hospitalization and age. Attention scores were predicted by hospitalization and fatigue.

Discussion: Thus, PCS is associated with long-term cognitive dysfunction, particularly in delayed memory, attention, and executive functioning. Memory deficits seem to be of particular relevance to patients’ experience of subjective impairment. Hospitalization, fatigue, and age seem to predict cognitive deficits, while time since infection, depression, and pre-existing conditions do not.

Source: Kozik V, Reuken P, Utech I, Gramlich J, Stallmach Z, Demeyere N, Rakers F, Schwab M, Stallmach A, Finke K. Characterization of neurocognitive deficits in patients with post-COVID-19 syndrome: persistence, patients’ complaints, and clinical predictors. Front Psychol. 2023 Oct 17;14:1233144. doi: 10.3389/fpsyg.2023.1233144. PMID: 37915528; PMCID: PMC10616256. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616256/ (Full text)

Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial

Abstract:

This research aimed to examine the potential alleviative effects of beta-glucan administration on fatigue, unrefreshing sleep, anxiety/depression symptoms and health-related quality of life in ME/CFS. A 36-week unicenter, randomized, double-blind, placebo-controlled trial was conducted in 65 ME/CFS patients, who were randomly allocated to one of two arms to receive four capsules each one of 250 mg beta-glucan, 3.75 µg vitamin D3, 1.05 mg vitamin B6, and 7.5 mg zinc (n = 35), or matching placebo including only microcrystalline cellulose as an excipient (n = 30) once daily.

The findings showed that the beta-glucan supplementation significantly improved cognitive fatigue (assessed with FIS-40 scores) after the 36-week treatment compared to the baseline (p = 0.0338). Taken together, this study presents the novel finding that yeast-derived beta-glucan may alleviate cognitive fatigue symptoms in ME/CFS. Thus, it offers valuable scientific insights into the potential use of yeast beta-glucan as a nutritional supplement and/or functional food to prevent or reduce cognitive dysfunction in patients with ME/CFS. Further interventions are warranted to validate these findings and also to delve deeper into the possible immunometabolic pathomechanisms of beta-glucans in ME/CFS.

Source: Lacasa M, Alegre-Martin J, Sentañes RS, Varela-Sende L, Jurek J, Castro-Marrero J. Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2023 Oct 24;15(21):4504. doi: 10.3390/nu15214504. PMID: 37960157. https://www.mdpi.com/2072-6643/15/21/4504 (Full text)

Altered brain connectivity in Long Covid during cognitive exertion: a pilot study

Abstract:

Introduction: Debilitating Long-Covid symptoms occur frequently after SARS-COVID-19 infection.

Methods: Functional MRI was acquired in 10 Long Covid (LCov) and 13 healthy controls (HC) with a 7 Tesla scanner during a cognitive (Stroop color-word) task. BOLD time series were computed for 7 salience and 4 default-mode network hubs, 2 hippocampus and 7 brainstem regions (ROIs). Connectivity was characterized by the correlation coefficient between each pair of ROI BOLD time series. We tested for HC versus LCov differences in connectivity between each pair of the 20 regions (ROI-to-ROI) and between each ROI and the rest of the brain (ROI-to-voxel). For LCov, we also performed regressions of ROI-to-ROI connectivity with clinical scores.

Results: Two ROI-to-ROI connectivities differed between HC and LCov. Both involved the brainstem rostral medulla, one connection to the midbrain, another to a DM network hub. Both were stronger in LCov than HC. ROI-to-voxel analysis detected multiple other regions where LCov connectivity differed from HC located in all major lobes. Most, but not all connections, were weaker in LCov than HC. LCov, but not HC connectivity, was correlated with clinical scores for disability and autonomic function and involved brainstem ROI.

Discussion: Multiple connectivity differences and clinical correlations involved brainstem ROIs. Stronger connectivity in LCov between the medulla and midbrain may reflect a compensatory response. This brainstem circuit regulates cortical arousal, autonomic function and the sleep-wake cycle. In contrast, this circuit exhibited weaker connectivity in ME/CFS. LCov connectivity regressions with disability and autonomic scores were consistent with altered brainstem connectivity in LCov.

Source: Barnden L, Thapaliya K, Eaton-Fitch N, Barth M, Marshall-Gradisnik S. Altered brain connectivity in Long Covid during cognitive exertion: a pilot study. Front Neurosci. 2023 Jun 22;17:1182607. doi: 10.3389/fnins.2023.1182607. PMID: 37425014; PMCID: PMC10323677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323677/ (Full text)