Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders

Abstract:

Neuroinflammatory and neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood.

These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration.

Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.

Source: Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells. 2024 Mar 14;13(6):511. doi: 10.3390/cells13060511. PMID: 38534355; PMCID: PMC10969521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969521/ (Full text)

Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease

Abstract:

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation.

Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson’s disease, COVID, traumatic brain injury, and Alzheimer’s disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them.

Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical “psychiatric medications” are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.

Source: Khalid A. Hanafy, Tudor G. Jovin. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front. Immunol., 17 January 2024, Sec. Inflammation, Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1332776 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1332776/full (Full text)

Identification of the pathogenic relationship between Long COVID and Alzheimer’s disease by bioinformatics methods

Abstract:

Background: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented global health crisis. Although many Corona Virus Disease 2019 (COVID-19) patients have recovered, the long-term consequences of SARS-CoV-2 infection are unclear. Several independent epidemiological surveys and clinical studies have found that SARS-CoV-2 infection and Long COVID are closely related to Alzheimer’s disease (AD). This could lead to long-term medical challenges and social burdens following this health crisis. However, the mechanism between Long COVID and AD is unknown.

Methods: Genes associated with Long COVID were collected from the database. Two sets of AD-related clinical sample datasets were collected in the Gene Expression Omnibus (GEO) database by limiting screening conditions. After identifying the differentially expressed genes (DEGs) of AD, the significant overlapping genes of AD and Long COVID were obtained by taking the intersection. Then, four kinds of analyses were performed, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis, protein-protein interaction (PPI) analysis, identification of hub genes, hub gene verification and transcription factors (TFs) prediction.

Results: A total of 197 common genes were selected for subsequent analysis. GO and KEGG enrichment analysis showed that these genes were mainly enriched in multiple neurodegenerative disease related pathways. In addition, 20 important hub genes were identified using cytoHubba. At the same time, these hub genes were verified in another data set, where 19 hub gene expressions were significantly different in the two diseases and 6 hub genes were significantly different in AD patients of different genders. Finally, we collected 9 TFs that may regulate the expression of these hub genes in the Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRUSST) database and verified them in the current data set.

Conclusion: This work reveals the common pathways and hub genes of AD and Long COVID, providing new ideas for
the pathogenic relationship between these two diseases and further mechanism research.

Source: