Cognitive impairment in post-acute sequelae of COVID-19 and short duration myalgic encephalomyelitis patients is mediated by orthostatic hemodynamic changes

Introduction: Cognitive impairment is experienced by people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-acute sequelae of COVID-19 (PASC). Patients report difficulty remembering, concentrating, and making decisions. Our objective was to determine whether orthostatic hemodynamic changes were causally linked to cognitive impairment in these diseases.

Methods: This prospective, observational cohort study enrolled PASC, ME/CFS, and healthy controls. All participants underwent clinical evaluation and assessment that included brief cognitive testing before and after an orthostatic challenge. Cognitive testing measured cognitive efficiency which is defined as the speed and accuracy of subject’s total correct responses per minute. General linear mixed models were used to analyze hemodynamics and cognitive efficiency during the orthostatic challenge. Additionally, mediation analysis was used to determine if hemodynamic instability induced during the orthostatic challenge mediated the relationship between disease status and cognitive impairment.

Results: Of the 276 participants enrolled, 256 were included in this study (34 PASC, 71 < 4 year duration ME/CFS, 69 > 10 year ME/CFS duration, and 82 healthy controls). Compared to healthy controls, the disease cohorts had significantly lower cognitive efficiency scores immediately following the orthostatic challenge. Cognitive efficiency remained low for the >10 year ME/CFS 2 and 7 days after orthostatic challenge. Narrow pulse pressure less than 25% of systolic pressure occurred at 4 and 5 min into the orthostatic challenge for the PASC and ME/CFS cohorts, respectively. Abnormally narrow pulse pressure was associated with slowed information processing in PASC patients compared to healthy controls (−1.5, p = 0.04). Furthermore, increased heart rate during the orthostatic challenge was associated with a decreased procedural reaction time in PASC and < 4 year ME/CFS patients who were 40 to 65 years of age.

Discussion: For PASC patients, both their disease state and hemodynamic changes during orthostatic challenge were associated with slower reaction time and decreased response accuracy during cognitive testing. Reduced cognitive efficiency in <4 year ME/CFS patients was associated with higher heart rate in response to orthostatic stress. Hemodynamic changes did not correlate with cognitive impairment for >10 year ME/CFS patients, but cognitive impairment remained. These findings underscore the need for early diagnosis to mitigate direct hemodynamic and other physiological effects on symptoms of cognitive impairment.

Source: Day Heather, Yellman Brayden, Hammer Sarah, Rond Candace, Bell Jennifer, Abbaszadeh Saeed, Stoddard Greg, Unutmaz Derya, Bateman Lucinda, Vernon Suzanne D. Cognitive impairment in post-acute sequelae of COVID-19 and short duration myalgic encephalomyelitis patients is mediated by orthostatic hemodynamic changes. Frontiers in Neuroscience, VOLUME=17, 2023. DOI=10.3389/fnins.2023.1203514. ISSN=1662-453X. https://www.frontiersin.org/articles/10.3389/fnins.2023.1203514 (Full text)

Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

Background: Long COVID describes a condition with symptoms that linger for months to years following acute COVID-19. Many of these Long COVID symptoms are like those experienced by patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Objective: We wanted to determine if people with Long COVID experienced post-exertional malaise (PEM), the hallmark symptom of ME/CFS, and if so, how it compared to PEM experienced by patients with ME/CFS.

Methods: A questionnaire that asked about the domains of PEM including triggers, experience, recovery, and prevention was administered to 80 people seeking care for Long COVID at Bateman Horne Center. Their responses were compared to responses about PEM given by 151 patients with ME/CFS using chi-square tests of independence.

Results: All but one Long COVID respondent reported having PEM. There were many significant differences in the types of PEM triggers, symptoms experienced during PEM, and ways to recover and prevent PEM between Long COVID and ME/CFS. Similarities between Long COVID and ME/CFS included low and medium physical and cognitive exertion to trigger PEM, symptoms of fatigue, pain, immune reaction, neurologic, orthostatic intolerance, and gastrointestinal symptoms during PEM, rest to recover from PEM, and pacing to prevent PEM.

Conclusion: People with Long COVID experience PEM. There were significant differences in PEM experienced by people with Long COVID compared to patients with ME/CFS. This may be due to the newness of Long COVID, not knowing what exertional intolerance is or how to manage it.

Source: Vernon SD, Hartle M, Sullivan K, Bell J, Abbaszadeh S, Unutmaz D, Bateman L. Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work. 2023 Mar 7. doi: 10.3233/WOR-220581. Epub ahead of print. PMID: 36911963. https://content.iospress.com/articles/work/wor220581 (Full text)

Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients

Highlights

  • Multi-‘omics identified phenotypic, gut microbial, and metabolic biomarkers for ME/CFS.
  • Reduced gut microbial diversity and increased plasma sphingomyelins in ME/CFS.
  • Short-term patients had more severe gut microbial dysbiosis with decreased butyrate.
  • Long-term patients had more significant metabolic and clinical aberrations

Summary

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive.

Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79).

First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations.

Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate.

In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne D. Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host & Microbe 31, 273–287. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5 (Full text)

Improvement of Long COVID symptoms over one year

Abstract:

Importance: Early and accurate diagnosis and treatment of Long COVID, clinically known as post-acute sequelae of COVID-19 (PASC), may mitigate progression to chronic diseases such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Our objective was to determine the utility of the DePaul Symptom Questionnaire (DSQ) to assess the frequency and severity of common symptoms of ME/CFS, to diagnose and monitor symptoms in patients with PASC.

Methods: This prospective, observational cohort study enrolled 185 people that included 34 patients with PASC that had positive COVID-19 test and persistent symptoms of >3 months and 151 patients diagnosed with ME/CFS. PASC patients were followed over 1 year and responded to the DSQ at baseline and 12 months. ME/CFS patients responded to the DSQ at baseline and 1 year later. Changes in symptoms over time were analyzed using a fixed-effects model to compute difference-in-differences estimates between baseline and 1-year follow-up assessments.

Participants: Patients were defined as having PASC if they had a previous positive COVID-19 test, were experiencing symptoms of fatigue, post-exertional malaise, or other unwellness for at least 3 months, were not hospitalized for COVID-19, had no documented major medical or psychiatric diseases prior to COVID-19, and had no other active and untreated disease processes that could explain their symptoms. PASC patients were recruited in 2021. ME/CFS patients were recruited in 2017.

Results: At baseline, patients with PASC had similar symptom severity and frequency as patients with ME/CFS and satisfied ME/CFS diagnostic criteria. ME/CFS patients experienced significantly more severe unrefreshing sleep and flu-like symptoms. Five symptoms improved significantly over the course of 1 year for PASC patients including fatigue, post-exertional malaise, brain fog, irritable bowel symptoms and feeling unsteady. In contrast, there were no significant symptom improvements for ME/CFS patients.

Conclusion and relevance: There were considerable similarities between patients with PASC and ME/CFS at baseline. However, symptoms improved for PASC patients over the course of a year but not for ME/CFS patients. PASC patients with significant symptom improvement no longer met ME/CFS clinical diagnostic criteria. These findings indicate that the DSQ can be used to reliably assess and monitor PASC symptoms.

Source: Oliveira CR, Jason LA, Unutmaz D, Bateman L, Vernon SD. Improvement of Long COVID symptoms over one year. Front Med (Lausanne). 2023 Jan 9;9:1065620. doi: 10.3389/fmed.2022.1065620. PMID: 36698810; PMCID: PMC9868805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868805/ (Full text)

Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, multi-system, debilitating disability manifesting as severe fatigue and post-exertional malaise. The chronic dysfunctions in ME/CFS are increasingly recognized as significant health factors with potential parallels with “long COVID”. However, the etiology of ME/CFS remains elusive with limited high-resolution human studies. In addition, reliable biomarker-based diagnostics have not been well-established, but may assist in disease classification, particularly during different temporal phases of the disease. Here, we performed deep multi-omics (shotgun metagenomics of gut microbiota and plasma metabolomics) and clinical phenotyping of healthy controls (n=79) vs. two cohorts of ME/CFS patients: those with short-term disease (<4 years, n=75), and patients with long-term disease (>10y, n=79).

Overall, ME/CFS was characterized by reduced gut microbiome diversity and richness with high heterogeneity, and depletion of sphingomyelins and short-chain fatty acids in the plasma. We found significant differences when stratifying by cohort; short-term ME/CFS was associated with more microbial dysbiosis, but long-term ME/CFS was associated with markedly more severe phenotypic and metabolic abnormalities. We identified a reduction in the gene-coding capacity (and relative abundance of butyrate producers) of microbial butyrate biosynthesis together with a reduction in the plasma concentration of butyrate, especially in the short-term group. Global co-association and detailed gene pathway correlation analyses linking the microbiome and metabolome identified additional potential biological mechanisms underlying host-microbiome interactions in ME/CFS, including bile acids and benzoate pathways.

Finally, we built multiple state-of-the-art classifiers to identify microbes, microbial gene pathways, metabolites, and clinical features that individually or together, were most able to differentiate short or long-term MECFS, or MECFS vs. healthy controls. Taken together, our study presents the highest resolution, multi-cohort and multi-omics analysis to date, providing an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). bioRxiv 2021.10.27.466150; doi: https://doi.org/10.1101/2021.10.27.466150 https://www.biorxiv.org/content/10.1101/2021.10.27.466150v1 (Full study available for download)

Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients

Abstract:

Background: Lightheadedness, fatigue, weakness, heart palpitations, cognitive dysfunction, muscle pain, and exercise intolerance are some of the symptoms of orthostatic intolerance (OI). There is substantial comorbidity of OI in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome). The 10-minute NASA Lean Test (NLT) is a simple, point-of-care method that can aid ME/CFS diagnosis and guide management and treatment of OI. The objective of this study was to understand the hemodynamic changes that occur in ME/CFS patients during the 10-minute NLT.

Methods: A total of 150 ME/CFS patients and 75 age, gender and race matched healthy controls (HCs) were enrolled. We recruited 75 ME/CFS patients who had been sick for less than 4 years (< 4 ME/CFS) and 75 ME/CFS patients sick for more than 10 years (> 10 ME/CFS). The 10-minute NLT involves measurement of blood pressure and heart rate while resting supine and every minute for 10 min while standing with shoulder-blades on the wall for a relaxed stance. Spontaneously reported symptoms are recorded during the test. ANOVA and regression analysis were used to test for differences and relationships in hemodynamics, symptoms and upright activity between groups.

Results: At least 5 min of the 10-minute NLT were required to detect hemodynamic changes. The < 4 ME/CFS group had significantly higher heart rate and abnormally narrowed pulse pressure compared to > 10 ME/CFS and HCs. The < 4 ME/CFS group experienced significantly more OI symptoms compared to > 10 ME/CFS and HCs. The circulatory decompensation observed in the < 4 ME/CFS group was not related to age or medication use.

Conclusions: Circulatory decompensation characterized by increased heart rate and abnormally narrow pulse pressure was identified in a subgroup of ME/CFS patients who have been sick for < 4 years. This suggests inadequate ventricular filling from low venous pressure. The 10-minute NLT can be used to diagnose and treat the circulatory decompensation in this newly recognized subgroup of ME/CFS patients. The > 10 ME/CFS group had less pronounced hemodynamic changes during the NLT possibly from adaptation and compensation that occurs over time. The 10-minute NLT is a simple and clinically useful point-of-care method that can be used for early diagnosis of ME/CFS and help guide OI treatment.

Source: Lee J, Vernon SD, Jeys P, et al. Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients. J Transl Med. 2020;18(1):314. Published 2020 Aug 15. doi:10.1186/s12967-020-02481-y https://pubmed.ncbi.nlm.nih.gov/32799889/

Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder of unknown etiology, and diagnosis of the disease is largely based on clinical symptoms. We hypothesized that immunological disruption is the major driver of this disease and analyzed a large cohort of ME/CFS patient or control blood samples for differences in T cell subset frequencies and functions.

We found that the ratio of CD4+ to CD8+ T cells and the proportion of CD8+ effector memory T cells were increased, whereas NK cells were reduced in ME/CFS patients younger than 50 years old compared to a healthy control group. Remarkably, major differences were observed in Th1, Th2, Th17 and mucosal-associated invariant T (MAIT) T cell subset functions across all ages of patients compared to healthy subjects. While CCR6+ Th17 cells in ME/CFS secreted less IL-17 compared to controls, their overall frequency was higher. Similarly, MAIT cells from patients secreted lower IFNγ, GranzymeA and IL-17 upon activation.

Together, these findings suggest chronic stimulation of these T cell populations in ME/CFS patients. In contrast, the frequency of regulatory T cells (Tregs), which control excessive immune activation, was higher in ME/CFS patients. Finally, using a machine learning algorithm called random forest, we determined that the set of T cell parameters analyzed could identify more than 90% of the subjects in the ME/CFS cohort as patients (93% true positive rate or sensitivity).

In conclusion, these multiple and major perturbations or dysfunctions in T cell subsets in ME/CFS patients suggest potential chronic infections or microbiome dysbiosis. These findings also have implications for development of ME/CFS specific immune biomarkers and reveal potential targets for novel therapeutic interventions.

Source: Ece Karhan, Courtney L Gunter, Vida Ravanmehr, Meghan Horne, Lina Kozhaya, Stephanie Renzullo, Lindsey Placek, Joshy George, Peter N Robinson, Suzanne D Vernon, Lucinda Bateman, Derya Unutmaz. Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
bioRxiv 2019.12.23.887505; doi: https://doi.org/10.1101/2019.12.23.887505 https://www.biorxiv.org/content/10.1101/2019.12.23.887505v1 (Full text available as PDF file)