Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood.

A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria.

In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS.

Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS.

This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.

Source: Wei X, Xin J, Chen W, Wang J, Lv Y, Wei Y, Li Z, Ding Q, Shen Y, Xu X, Zhang X, Zhang W, Zu X. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed Pharmacother. 2023 May 9;163:114862. doi: 10.1016/j.biopha.2023.114862. Epub ahead of print. PMID: 37167729. https://www.sciencedirect.com/science/article/pii/S0753332223006522?via%3Dihub (Full study)

Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients

Highlights

  • Multi-‘omics identified phenotypic, gut microbial, and metabolic biomarkers for ME/CFS.
  • Reduced gut microbial diversity and increased plasma sphingomyelins in ME/CFS.
  • Short-term patients had more severe gut microbial dysbiosis with decreased butyrate.
  • Long-term patients had more significant metabolic and clinical aberrations

Summary

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive.

Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79).

First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations.

Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate.

In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne D. Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host & Microbe 31, 273–287. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5 (Full text)

Studies find that microbiome changes may be a signature for ME/CFS

Researchers have found differences in the gut microbiomes of people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) compared to healthy controls. Findings from two studies, published in Cell Host & Microbe and funded by the National Institutes of Health add to growing evidence that connects disruptions in the gut microbiome, the complete collection of bacteria, viruses, and fungi that live in our gastrointestinal system, to ME/CFS.

“The microbiome has emerged as a potential contributor to ME/CFS. These findings provide unique insights into the role the microbiome plays in the disease and suggest that certain differences in gut microbes could serve as biomarkers for ME/CFS,” said Vicky Whittemore, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS).

ME/CFS is a serious, chronic, and debilitating disease characterized by a range of symptoms, including fatigue, post-exertional malaise, sleep disturbance, cognitive difficulties, pain, and gastrointestinal issues. The causes of the disease are unknown and there are no treatments.

In one study, senior author Brent L. Williams, Ph.D., assistant professor, W. Ian Lipkin, M.D., John Snow Professor of Epidemiology and director of the Center for Infection and Immunity at the Columbia University Mailman School of Public Health, in New York City, and their collaborators analyzed the genetic makeup of gut bacteria in fecal samples collected from a geographically diverse cohort of 106 people with ME/CFS and 91 healthy controls. The results revealed key differences in microbiome diversity, quantity, metabolic pathways, and interactions between species of gut bacteria.

Dr. Williams and his colleagues found that people with ME/CFS had abnormally low levels of several bacterial species compared to healthy controls, including Faecalibacterium prausnitzii (F. prausnitzii) and Eubacterium rectale. These health-promoting bacteria produce a short chain fatty acid called butyrate, a bacterial metabolite, or by-product, that plays an important role in maintaining gut health. An acetate-producing bacterium was also reduced in samples obtained from people with ME/CFS.

More detailed metabolomic analyses confirmed that a reduction in these bacteria was associated with reduced butyrate production in ME/CFS. Butyrate is the primary energy source for cells that line the gut, providing up to 70% of their energy requirements, support for the gut immune system, and protection against diseases of the digestive tract. Butyrate, tryptophan, and other metabolites detected in the blood are important for regulating immune, metabolic, and endocrine functions.

While species of butyrate-producing bacteria decreased, there were increased levels of nine other species in ME/CFS, including Enterocloster bolteae and Ruminococcus gnavus, which are associated with autoimmune diseases and inflammatory bowel disease, respectively.

Dr. Williams’ group also reported that an abundance of F. prausnitzii was inversely associated with fatigue severity in ME/CFS, suggesting a possible link between gut bacteria and disease symptoms. More research is needed to determine if differences in the gut microbiome are a consequence or cause of symptoms.

The findings indicate that imbalances in these 12 species of bacteria could be used as biomarkers for ME/CFS classification, potentially providing consistent, measurable targets to improve diagnosis.

The gut microbiome is an ecosystem with complex interactions between bacteria, where microbes can exchange or compete for nutrients, metabolites, or other molecular signals. Researchers found notable differences in the network of species interactions in people with ME/CFS—including unique interactions between F. prausnitzii and other species. This indicates that there is an extensive rewiring of bacterial networks in ME/CFS.

“In addition to differences in individual species in ME/CFS, focusing a lens on community interaction dynamics may add greater specificity to the broad definition of dysbiosis, distinguishing between other diseases in which the gut microbiome becomes imbalanced,” said Dr. Williams. “This is also important for generating new testable hypotheses about the underlying mechanisms and mediators of dysbiosis in ME/CFS and may eventually inform strategies to correct these imbalances.”

A balanced microbiome is also essential for a variety of neural systems, especially immune regulation and coupling between energy metabolism and blood supply in the brain, as well as the function of the nerves that supply the gut.

In another study at the Jackson Laboratory in Farmington, Connecticut, Julia Oh, Ph.D.(link is external), associate professor, and Derya Unutmaz, M.D., professor, teamed up with other ME/CFS experts to study microbiome abnormalities in different phases of ME/CFS. Dr. Oh’s team collected and analyzed clinical data, fecal samples, and blood samples from 149 people with ME/CFS who had been diagnosed within the previous four years (74 short-term) or who had been diagnosed more than 10 years ago (75 long-term) and 79 healthy controls.

The results showed that the short-term group had less microbial diversity, while the long-term group established a stable, but individualized gut microbiome similar to healthy controls. Dr. Oh and her colleagues found lower levels of several butyrate-producing species, including F. prausnitzii, especially in the short-term participants. There was also a reduction in species associated with tryptophan metabolism in all ME/CFS participants compared to controls.

Dr. Oh’s group also collected detailed clinical and lifestyle data from participants. By combining these data with genetic and metabolome data, the team developed a way to accurately classify and differentiate ME/CFS from healthy controls. Using this approach, they found that individuals with long-term ME/CFS had a more balanced microbiome but showed more severe clinical symptoms and progressive metabolic irregularities compared to the other groups.

Both studies identify potential biomarkers for ME/CFS, which may inform diagnostic tests and disease classification. Understanding the connection between disturbances in the gut microbiome and ME/CFS may also guide the development of new therapeutics.

Additional research is required to learn more about the pathophysiological implications of butyrate and other metabolite deficiencies in ME/CFS. Future studies will determine how gut microbe disturbances contribute to symptoms, including changes during disease progression.

The studies were funded in part by the NIH’s ME/CFS Collaborative Research Network(link is external), a consortium supported by multiple institutes and centers at NIH, consisting of three collaborative research centers and a data management coordinating center. The research network was established in 2017 to help advance research on ME/CFS. The research was supported by NINDS grant U54NS105539, National Institute of Allergy and Infectious Diseases grants U54AI138370 and R56AI120724, and anonymous donors through the Crowdfunding Microbe Discovery Project.

Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library.

Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS.

Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.

Source: Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A, Segal E. Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients. Sci Adv. 2022 Sep 23;8(38):eabq2422. doi: 10.1126/sciadv.abq2422. Epub 2022 Sep 23. PMID: 36149952. https://www.science.org/doi/10.1126/sciadv.abq2422 (Full text)

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)