Heterogeneity in Measures of Illness among Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Is Not Explained by Clinical Practice: A Study in Seven U.S. Specialty Clinics

Abstract:

Background: One of the goals of the Multi-site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM) study was to evaluate whether clinicians experienced in diagnosing and caring for patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) recognized the same clinical entity.
Methods: We enrolled participants from seven specialty clinics in the United States. We used baseline data (n = 465) on standardized questions measuring general clinical characteristics, functional impairment, post-exertional malaise, fatigue, sleep, neurocognitive/autonomic symptoms, pain, and other symptoms to evaluate whether patient characteristics differed by clinic.
Results: We found few statistically significant and no clinically significant differences between clinics in their patients’ standardized measures of ME/CFS symptoms and function. Strikingly, patients in each clinic sample and overall showed a wide distribution in all scores and measures.
Conclusions: Illness heterogeneity may be an inherent feature of ME/CFS. Presenting research data in scatter plots or histograms will help clarify the challenge. Relying on case–control study designs without subgrouping or stratification of ME/CFS illness characteristics may limit the reproducibility of research findings and could obscure underlying mechanisms.
Source: Unger ER, Lin J-MS, Chen Y, Cornelius ME, Helton B, Issa AN, Bertolli J, Klimas NG, Balbin EG, Bateman L, et al. Heterogeneity in Measures of Illness among Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Is Not Explained by Clinical Practice: A Study in Seven U.S. Specialty Clinics. Journal of Clinical Medicine. 2024; 13(5):1369. https://doi.org/10.3390/jcm13051369 https://www.mdpi.com/2077-0383/13/5/1369 (Full text)

Myalgic Encephalomyelitis-Chronic Fatigue Syndrome Common Data Element item content analysis

Abstract:

Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem chronic disease estimated to affect 836,000-2.5 million individuals in the United States. Persons with ME/CFS have a substantial reduction in their ability to engage in pre-illness levels of activity. Multiple symptoms include profound fatigue, post-exertional malaise, unrefreshing sleep, cognitive impairment, orthostatic intolerance, pain, and other symptoms persisting for more than 6 months. Diagnosis is challenging due to fluctuating and complex symptoms. ME/CFS Common Data Elements (CDEs) were identified in the National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) Common Data Element Repository. This study reviewed ME/CFS CDEs item content.

Methods: Inclusion criteria for CDEs (measures recommended for ME/CFS) analysis: 1) assesses symptoms; 2) developed for adults; 3) appropriate for patient reported outcome measure (PROM); 4) does not use visual or pictographic responses. Team members independently reviewed CDEs item content using the World Health Organization International Classification of Functioning, Disability and Health (ICF) framework to link meaningful concepts.

Results: 119 ME/CFS CDEs (measures) were reviewed and 38 met inclusion criteria, yielding 944 items linked to 1503 ICF meaningful concepts. Most concepts linked to ICF Body Functions component (b-codes; n = 1107, 73.65%) as follows: Fatiguability (n = 220, 14.64%), Energy Level (n = 166, 11.04%), Sleep Functions (n = 137, 9.12%), Emotional Functions (n = 131, 8.72%) and Pain (n = 120, 7.98%). Activities and Participation concepts (d codes) accounted for a smaller percentage of codes (n = 385, 25.62%). Most d codes were linked to the Mobility category (n = 69, 4.59%) and few items linked to Environmental Factors (e codes; n = 11, 0.73%).

Discussion: Relatively few items assess the impact of ME/CFS symptoms on Activities and Participation. Findings support development of ME/CFS-specific PROMs, including items that assess activity limitations and participation restrictions. Development of psychometrically-sound, symptom-based item banks administered as computerized adaptive tests can provide robust assessments to assist primary care providers in the diagnosis and care of patients with ME/CFS.

Source: Slavin MD, Bailey HM, Hickey EJ, Vasudevan A, Ledingham A, Tannenbaum L, Bateman L, Kaufman DL, Peterson DL, Ruhoy IS, Systrom DM, Felsenstein D, Kazis LE. Myalgic Encephalomyelitis-Chronic Fatigue Syndrome Common Data Element item content analysis. PLoS One. 2023 Sep 12;18(9):e0291364. doi: 10.1371/journal.pone.0291364. PMID: 37698999. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291364 (Full text)

Cognitive impairment in post-acute sequelae of COVID-19 and short duration myalgic encephalomyelitis patients is mediated by orthostatic hemodynamic changes

Introduction: Cognitive impairment is experienced by people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-acute sequelae of COVID-19 (PASC). Patients report difficulty remembering, concentrating, and making decisions. Our objective was to determine whether orthostatic hemodynamic changes were causally linked to cognitive impairment in these diseases.

Methods: This prospective, observational cohort study enrolled PASC, ME/CFS, and healthy controls. All participants underwent clinical evaluation and assessment that included brief cognitive testing before and after an orthostatic challenge. Cognitive testing measured cognitive efficiency which is defined as the speed and accuracy of subject’s total correct responses per minute. General linear mixed models were used to analyze hemodynamics and cognitive efficiency during the orthostatic challenge. Additionally, mediation analysis was used to determine if hemodynamic instability induced during the orthostatic challenge mediated the relationship between disease status and cognitive impairment.

Results: Of the 276 participants enrolled, 256 were included in this study (34 PASC, 71 < 4 year duration ME/CFS, 69 > 10 year ME/CFS duration, and 82 healthy controls). Compared to healthy controls, the disease cohorts had significantly lower cognitive efficiency scores immediately following the orthostatic challenge. Cognitive efficiency remained low for the >10 year ME/CFS 2 and 7 days after orthostatic challenge. Narrow pulse pressure less than 25% of systolic pressure occurred at 4 and 5 min into the orthostatic challenge for the PASC and ME/CFS cohorts, respectively. Abnormally narrow pulse pressure was associated with slowed information processing in PASC patients compared to healthy controls (−1.5, p = 0.04). Furthermore, increased heart rate during the orthostatic challenge was associated with a decreased procedural reaction time in PASC and < 4 year ME/CFS patients who were 40 to 65 years of age.

Discussion: For PASC patients, both their disease state and hemodynamic changes during orthostatic challenge were associated with slower reaction time and decreased response accuracy during cognitive testing. Reduced cognitive efficiency in <4 year ME/CFS patients was associated with higher heart rate in response to orthostatic stress. Hemodynamic changes did not correlate with cognitive impairment for >10 year ME/CFS patients, but cognitive impairment remained. These findings underscore the need for early diagnosis to mitigate direct hemodynamic and other physiological effects on symptoms of cognitive impairment.

Source: Day Heather, Yellman Brayden, Hammer Sarah, Rond Candace, Bell Jennifer, Abbaszadeh Saeed, Stoddard Greg, Unutmaz Derya, Bateman Lucinda, Vernon Suzanne D. Cognitive impairment in post-acute sequelae of COVID-19 and short duration myalgic encephalomyelitis patients is mediated by orthostatic hemodynamic changes. Frontiers in Neuroscience, VOLUME=17, 2023. DOI=10.3389/fnins.2023.1203514. ISSN=1662-453X. https://www.frontiersin.org/articles/10.3389/fnins.2023.1203514 (Full text)

Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by substantial reduction in function accompanied by profound unexplained fatigue not significantly relieved by rest, post-exertional malaise, and other symptoms. Reduced natural killer (NK) cell count and cytotoxicity has been investigated as a biomarker for ME/CFS, but few clinical laboratories offer the test and multi-site verification studies have not been conducted.

Methods: We determined NK cell counts and cytotoxicity in 174 (65%) ME/CFS, 86 (32%) healthy control (HC) and 10 (3.7%) participants with other fatigue associated conditions (ill control [IC]) from the Multi-Site Clinical Assessment of ME/CFS (MCAM) study using an assay validated for samples shipped overnight instead of testing on day of venipuncture.

Results: We found a large variation in percent cytotoxicity [mean and (IQR) for ME/CFS and HC respectively, 34.1% (IQR 22.4-44.3%) and 33.6% (IQR 22.9-43.7%)] and no statistically significant differences between patients with ME/CFS and HC (p-value = 0.79). Analysis stratified on illness domain measured with standardized questionnaires did not identify an association of NK cytotoxicity with domain scores. Among all participants, NK cytotoxicity was not associated with survey results of physical and mental well-being, or health factors such as history of infection, obesity, smoking, and co-morbid conditions.

Conclusion: These results indicate this assay is not ready for clinical implementation and studies are needed to further explore immune parameters that may be involved in the pathophysiology of ME/CFS.

Source: Querec TD, Lin JS, Chen Y, Helton B, Kogelnik AM, Klimas NG, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Unger ER; MCAM Study Group. Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study. J Transl Med. 2023 Apr 3;21(1):242. doi: 10.1186/s12967-023-03958-2. PMID: 37013608. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-03958-2 (Full text)

Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

Background: Long COVID describes a condition with symptoms that linger for months to years following acute COVID-19. Many of these Long COVID symptoms are like those experienced by patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Objective: We wanted to determine if people with Long COVID experienced post-exertional malaise (PEM), the hallmark symptom of ME/CFS, and if so, how it compared to PEM experienced by patients with ME/CFS.

Methods: A questionnaire that asked about the domains of PEM including triggers, experience, recovery, and prevention was administered to 80 people seeking care for Long COVID at Bateman Horne Center. Their responses were compared to responses about PEM given by 151 patients with ME/CFS using chi-square tests of independence.

Results: All but one Long COVID respondent reported having PEM. There were many significant differences in the types of PEM triggers, symptoms experienced during PEM, and ways to recover and prevent PEM between Long COVID and ME/CFS. Similarities between Long COVID and ME/CFS included low and medium physical and cognitive exertion to trigger PEM, symptoms of fatigue, pain, immune reaction, neurologic, orthostatic intolerance, and gastrointestinal symptoms during PEM, rest to recover from PEM, and pacing to prevent PEM.

Conclusion: People with Long COVID experience PEM. There were significant differences in PEM experienced by people with Long COVID compared to patients with ME/CFS. This may be due to the newness of Long COVID, not knowing what exertional intolerance is or how to manage it.

Source: Vernon SD, Hartle M, Sullivan K, Bell J, Abbaszadeh S, Unutmaz D, Bateman L. Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work. 2023 Mar 7. doi: 10.3233/WOR-220581. Epub ahead of print. PMID: 36911963. https://content.iospress.com/articles/work/wor220581 (Full text)

Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients

Highlights

  • Multi-‘omics identified phenotypic, gut microbial, and metabolic biomarkers for ME/CFS.
  • Reduced gut microbial diversity and increased plasma sphingomyelins in ME/CFS.
  • Short-term patients had more severe gut microbial dysbiosis with decreased butyrate.
  • Long-term patients had more significant metabolic and clinical aberrations

Summary

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive.

Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79).

First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations.

Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate.

In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne D. Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host & Microbe 31, 273–287. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5 (Full text)

Improvement of Long COVID symptoms over one year

Abstract:

Importance: Early and accurate diagnosis and treatment of Long COVID, clinically known as post-acute sequelae of COVID-19 (PASC), may mitigate progression to chronic diseases such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Our objective was to determine the utility of the DePaul Symptom Questionnaire (DSQ) to assess the frequency and severity of common symptoms of ME/CFS, to diagnose and monitor symptoms in patients with PASC.

Methods: This prospective, observational cohort study enrolled 185 people that included 34 patients with PASC that had positive COVID-19 test and persistent symptoms of >3 months and 151 patients diagnosed with ME/CFS. PASC patients were followed over 1 year and responded to the DSQ at baseline and 12 months. ME/CFS patients responded to the DSQ at baseline and 1 year later. Changes in symptoms over time were analyzed using a fixed-effects model to compute difference-in-differences estimates between baseline and 1-year follow-up assessments.

Participants: Patients were defined as having PASC if they had a previous positive COVID-19 test, were experiencing symptoms of fatigue, post-exertional malaise, or other unwellness for at least 3 months, were not hospitalized for COVID-19, had no documented major medical or psychiatric diseases prior to COVID-19, and had no other active and untreated disease processes that could explain their symptoms. PASC patients were recruited in 2021. ME/CFS patients were recruited in 2017.

Results: At baseline, patients with PASC had similar symptom severity and frequency as patients with ME/CFS and satisfied ME/CFS diagnostic criteria. ME/CFS patients experienced significantly more severe unrefreshing sleep and flu-like symptoms. Five symptoms improved significantly over the course of 1 year for PASC patients including fatigue, post-exertional malaise, brain fog, irritable bowel symptoms and feeling unsteady. In contrast, there were no significant symptom improvements for ME/CFS patients.

Conclusion and relevance: There were considerable similarities between patients with PASC and ME/CFS at baseline. However, symptoms improved for PASC patients over the course of a year but not for ME/CFS patients. PASC patients with significant symptom improvement no longer met ME/CFS clinical diagnostic criteria. These findings indicate that the DSQ can be used to reliably assess and monitor PASC symptoms.

Source: Oliveira CR, Jason LA, Unutmaz D, Bateman L, Vernon SD. Improvement of Long COVID symptoms over one year. Front Med (Lausanne). 2023 Jan 9;9:1065620. doi: 10.3389/fmed.2022.1065620. PMID: 36698810; PMCID: PMC9868805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868805/ (Full text)

Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment (“brain fog”), orthostatic intolerance (OI) and other symptoms (“Long COVID”). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing.

Methods: We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app.

Participants: People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT.

Results: The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01).

Conclusions: A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.

Source: Vernon SD, Funk S, Bateman L, Stoddard GJ, Hammer S, Sullivan K, Bell J, Abbaszadeh S, Lipkin WI, Komaroff AL. Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne). 2022 Jun 23;9:917019. doi: 10.3389/fmed.2022.917019. PMID: 35847821; PMCID: PMC9285104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285104/ (Full text)

Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease.

Methods: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls.

Results: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873).

Conclusion: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS.

One sentence summary: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

Source: Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. medRxiv [Preprint]. 2022 Jan 11:2021.06.14.21258895. doi: 10.1101/2021.06.14.21258895. PMID: 35043127; PMCID: PMC8764736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764736/ (Full text)

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)