Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by substantial reduction in function accompanied by profound unexplained fatigue not significantly relieved by rest, post-exertional malaise, and other symptoms. Reduced natural killer (NK) cell count and cytotoxicity has been investigated as a biomarker for ME/CFS, but few clinical laboratories offer the test and multi-site verification studies have not been conducted.

Methods: We determined NK cell counts and cytotoxicity in 174 (65%) ME/CFS, 86 (32%) healthy control (HC) and 10 (3.7%) participants with other fatigue associated conditions (ill control [IC]) from the Multi-Site Clinical Assessment of ME/CFS (MCAM) study using an assay validated for samples shipped overnight instead of testing on day of venipuncture.

Results: We found a large variation in percent cytotoxicity [mean and (IQR) for ME/CFS and HC respectively, 34.1% (IQR 22.4-44.3%) and 33.6% (IQR 22.9-43.7%)] and no statistically significant differences between patients with ME/CFS and HC (p-value = 0.79). Analysis stratified on illness domain measured with standardized questionnaires did not identify an association of NK cytotoxicity with domain scores. Among all participants, NK cytotoxicity was not associated with survey results of physical and mental well-being, or health factors such as history of infection, obesity, smoking, and co-morbid conditions.

Conclusion: These results indicate this assay is not ready for clinical implementation and studies are needed to further explore immune parameters that may be involved in the pathophysiology of ME/CFS.

Source: Querec TD, Lin JS, Chen Y, Helton B, Kogelnik AM, Klimas NG, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Unger ER; MCAM Study Group. Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study. J Transl Med. 2023 Apr 3;21(1):242. doi: 10.1186/s12967-023-03958-2. PMID: 37013608. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-03958-2 (Full text)

Low molecular weight cytotoxic components (DAMPs) form the post-COVID-19 syndrome

Abstract:

We studied the role of cytotoxic components (DAMPs) formed in the body of patients with COVID-19 in ensuring the long-term preservation of post-COVID-19 manifestations and the possibility of creating an experimental model by transferring DAMPs to rats. In patients with post-COVID-19 syndrome (PCS) 2 months after SARS-CoV-2 infection we determined the presence of cytotoxic components in the blood serum (Terasaki test, Dunaliella viridis test and content of DAMPs).

In post-COVID-19 syndrome patients with a high content of serum cytotoxic oligopeptide fraction (selective group, n = 16) we determined the number of leukocytes, lymphocytes, neutrophil granulocytes and monocytes in the blood, the content of C-reactive protein (CRP), the concentration of C3 and C4 complement components and circulating immune complexes, the serum content of IL-6, IL -10, IL-18, TNF-α, phagocytic activity of neutrophils, presence of neutrophil traps and autoantibodies ANA.

It has been shown that in patients with PCS, there are components with cytotoxicity in the blood serum, form specific immunopathological patterns, which are characterized by: an increased content of CRP, complement system components C3 and C4 and cytokines (TNF-α, IL-6, IL-10, IL-18) activation, the formation of a wide range of autoantibodies ANA, the low efficiency of endocytosis in oxygen-independent phagocytosis; their phagocytic activity reaches its functional limit, and against this background, activation of neutrophil traps occurs, which can contribute to further induction of DAMPs. This self-sustaining cell-killing activation provided long-term preservation of PCS symptoms.

The transfer of blood serum components from selective group patients with PCS to rats was accompanied by the appearance of cytotoxic components in them which induced sensitization and immunopathological reactions. Preventive administration of a biologically active substance with polyfunctional properties MF to experimental animals “corrected” the initial functional state of the body’s immune-metabolic system and eliminated or facilitated immuno-inflammatory reactions.

Source: Klimova EM, Bozhkov AI, Lavinska OV, Drozdova LA, Kurhuzova NI. Low molecular weight cytotoxic components (DAMPs) form the post-COVID-19 syndrome. Immunobiology. 2023 Jan;228(1):152316. doi: 10.1016/j.imbio.2022.152316. Epub 2022 Dec 20. PMID: 36565610; PMCID: PMC9764760. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764760/ (Full text)

Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is hallmarked by a significant reduction in natural killer (NK) cell cytotoxicity, a mechanism tightly regulated by calcium (Ca2+). Interestingly, interleukin-2 (IL-2) increases NK cell cytotoxicity. Transient receptor potential melastatin 2 (TRPM2) ion channels are fundamental for Ca2+ signalling in NK cells. This pilot investigation aimed to characterise TRPM2 and CD38 surface expression in vitro on NK cells in ME/CFS patients. This investigation furthermore examined the pharmaceutical effect of 8-bromoadenosine phosphoribose (8-Br-ADPR) and N6-Benzoyladenosine-3′,5′-cyclic monophosphate (N6-Bnz-cAMP) on TRPM2 and CD38 surface expression and NK cell cytotoxicity between ME/CFS and healthy control (HC) participants.

METHODS: Ten ME/CFS patients (43.45 ± 12.36) and 10 HCs (43 ± 12.27) were age and sex-matched. Isolated NK cells were labelled with fluorescent antibodies to determine baseline and drug-treated TRPM2 and CD38 surface expression on NK cell subsets. Following IL-2 stimulation, NK cell cytotoxicity was measured following 8-Br-ADPR and N6-Bnz-cAMP drug treatments by flow cytometry.

RESULTS: Baseline TRPM2 and CD38 surface expression was significantly higher on NK cell subsets in ME/CFS patients compared with HCs. Post IL-2 stimulation, TRPM2 and CD38 surface expression solely decreased on the CD56DimCD16+ subset. 8-Br-ADPR treatment significantly reduced TRPM2 surface expression on the CD56BrightCD16Dim/- subset within the ME/CFS group. Baseline cell cytotoxicity was significantly reduced in ME/CFS patients, however no changes were observed post drug treatment in either group.

CONCLUSION: Overexpression of TRPM2 on NK cells may function as a compensatory mechanism to alert a dysregulation in Ca2+ homeostasis to enhance NK cell function in ME/CFS, such as NK cell cytotoxicity. As no improvement in NK cell cytotoxicity was observed within the ME/CFS group, an impairment in the TRPM2 ion channel may be present in ME/CFS patients, resulting in alterations in [Ca2+]i mobilisation and influx, which is fundamental in driving NK cell cytotoxicity. Differential expression of TRPM2 between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in ME/CFS.

Source: Balinas C, Cabanas H, Staines D, Marshall-Gradisnik S. Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2019 Dec 3;17(1):401. doi: 10.1186/s12967-019-02155-4. https://www.ncbi.nlm.nih.gov/pubmed/31796045

A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Compromised natural killer (NK) cell cytotoxic function is a well-documented and consistent feature of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Other outcomes evaluated in NK cells of ME/CFS patients, however, remain equivocal. The aim of this study was to conduct a systematic review of the literature regarding NK cell phenotype, receptor expression, cytokine production and cytotoxicity in ME/CFS patients and determine the appropriateness as a model for ME/CFS.

METHODS: Medline (EBSCOHost), Scopus, EMBASE and PubMed databases were systematically searched to source relevant papers published between 1994 and March 2018. This review included studies examining NK cells’ features in ME/CFS patients compared with HC following administration of specific inclusion and exclusion criteria. Secondary outcomes included genetic analysis in isolated NK cells or quality of life assessment. Quality assessment was completed using the Downs and Black checklist in addition to The Joanna Briggs Institute checklist.

RESULTS: Seventeen eligible publications were included in this review. All studies were observational case control studies. Of these, 11 investigated NK cell cytotoxicity, 14 investigated NK cell phenotype and receptor profiles, three examined NK cell cytokine production, six investigated NK cell lytic protein levels and four investigated NK cell degranulation. Impaired NK cell cytotoxicity remained the most consistent immunological report across all publications. Other outcomes investigated differed between studies.

CONCLUSION: A consistent finding among all papers included in this review was impaired NK cell cytotoxicity, suggesting that it is a reliable and appropriate cellular model for continued research in ME/CFS patients. Aberrations in NK cell lytic protein levels were also reported. Although additional research is recommended, current research provides a foundation for subsequent investigations. It is possible that NK cell abnormalities can be used to characterise a subset of ME/CFS due to the heterogeneity of both the illness itself and findings between studies investigating specific features of NK function.

Source: Eaton-Fitch N, du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome. Syst Rev. 2019 Nov 14;8(1):279. doi: 10.1186/s13643-019-1202-6. https://www.ncbi.nlm.nih.gov/pubmed/31727160

Chronic Fatigue Syndrome: Do herbs or homeopathy help?

Abstract:

To determine the effect of certain herbal and homeopathic preparations on symptoms, lymphocyte markers, and cytotoxic function of the lymphocytes in patients with chronic fatigue syndrome, we studied six outpatients diagnosed with the disease by their family physicians. Patients were given herbal and homeopathic preparations after a 3-week symptom-recording period. After treatment, symptoms were again recorded. Blood samples were taken before and after treatment. None of the values showed any significant change after treatment.

 

Source: Leyton E, Pross H. Chronic Fatigue Syndrome: Do herbs or homeopathy help? Can Fam Physician. 1992 Sep;38:2021-6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2145466/ (Full article)

 

Changes in natural killer cell phenotype in patients with post-viral fatigue syndrome

Abstract:

We analysed peripheral blood CD56+ natural killer (NK) cell subsets in 23 carefully characterized patients with post-viral fatigue syndrome (PFS), compared with 19 healthy controls, using fluorochrome-conjugated, specific monoclonal antibodies and the FACScan.

We found significantly increased percentages of CD56+, and especially CD56bright+ NK cells in PFS patients. We also found significantly increased percentages of CD56+ high affinity interleukin-2 (IL-2) receptor (CD25)+ and CD56+ transferrin receptor (CD71+) subsets of cells, most of which also stained brightly for CD56.

Also, we found an increased percentage of CD56+ CD3+ cells, many of which stained brightly for CD56, although there was no increase in the percentage of CD56- CD3+ T cells in these patients. These observations, in conjunction with very low percentage of CD56- CD25+ cells, suggest that there is a preferential involvement of this minor subset of CD56+ CD3+ T cells in PFS.

Finally, a decreased percentage of CD56+ Fc gamma receptor (CD16)+ NK cells was identified, which suggests a reduced capacity of antibody-dependent cellular cytotoxicity in PFS patients. Subsets of CD56+ NK cells co-expressing CD2, CD4 or CD8 did not show any significant difference between PFS patients and healthy controls.

These phenotypic changes provide laboratory evidence of immunological abnormalities in this syndrome, and, we suggest, may be consistent with persistent viral infection.

 

Source: Morrison LJ, Behan WH, Behan PO. Changes in natural killer cell phenotype in patients with post-viral fatigue syndrome. Clin Exp Immunol. 1991 Mar;83(3):441-6. http://www.ncbi.nlm.nih.gov/pubmed/1706238

You can read the full article herehttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1535328/

 

Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome

Abstract:

Natural killer (NK)3 cells are large granular lymphocytes that appear to play a significant role in the host’s defense against viral infection. We performed an extensive phenotypic and functional characterization of NK cells on 41 patients with the chronic fatigue syndrome (CFS), or “chronic active Epstein-Barr virus infection” syndrome, and on 23 age- and sex-matched asymptomatic control subjects in an attempt to further characterize this illness.

These studies demonstrated that a majority of patients with CFS have low numbers of NKH1+T3- lymphocytes, a population that represents the great majority of NK cells in normal individuals. CFS patients had normal numbers of NKH1+T3+ lymphocytes, a population that represents a relatively small fraction of NK cells in normal individuals.

When tested for cytotoxicity against a variety of different target cells, patients with CFS consistently demonstrated low levels of killing. After activation of cytolytic activity with recombinant interleukin 2, patients were able to display increased killing against K562 but most patients remained unable to lyse Epstein-Barr virus-infected B cell targets. Additional cytotoxicity experiments were carried out utilizing anti-T3 monoclonal antibody to block killing by NKH1+T3+ cells.

These experiments indicated that the NK cell that appears to be responsible for much of the functional activity remaining in patients with CFS belongs to the NKH1+T3+ subset, which under normal circumstances represents only approximately 20% of the NK cell population.

 

Source: Caligiuri M, Murray C, Buchwald D, Levine H, Cheney P, Peterson D, Komaroff AL, Ritz J. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J Immunol. 1987 Nov 15;139(10):3306-13. http://www.ncbi.nlm.nih.gov/pubmed/2824604