A Single-Center Pilot Study of Therapeutic Apheresis in Patients with Severe Post-COVID Syndrome

Abstract:

After the COVID-19 pandemic, many patients have reported chronic fatigue and severe post-exertional malaise, with symptoms similar to those of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The accumulation of agonistic receptor autoantibodies targeting beta-adrenergic (β1 and β2) and muscarinic (M3 and M4) neurotransmitter receptors may play a crucial role in the pathomechanism of both ME/CFS and post-COVID conditions.

Therapeutic apheresis has been suggested as an effective treatment option for alleviating and mitigating symptoms in this desperate group of patients. In this single-center pilot study, we analyzed autoantibodies in a cohort of 20 post-COVID patients before and after therapeutic apheresis. Apheresis resulted in a decline of β1 or β2 adrenergic receptor antibodies in all patients. Additionally, the majority of patients experienced a concurrent reduction in symptoms such as fatigue, physical activity restrictions, myalgia, post-exertional malaise, and concentration disorders.

This study clearly demonstrates an association between autoantibodies and the clinical improvement of post-COVID patients. Even if future sham-controlled trials do not show a positive outcome, extracorporeal apheresis may still be valuable for this patient group by temporarily improving microperfusion and symptoms. Success in restoring patients to work and normal life, as observed in many individuals after therapeutic apheresis, should be recognized. Therefore, we believe that extracorporeal therapeutic apheresis, as part of a multimodal treatment, should be considered an early intervention for postinfectious syndromes in selected patients.

Source: Korth J, Steenblock C, Walther R, Barbir M, Husung M, Velthof A. A Single-Center Pilot Study of Therapeutic Apheresis in Patients with Severe Post-COVID Syndrome. Horm Metab Res. 2024 Dec;56(12):869-874. doi: 10.1055/a-2445-8593. Epub 2024 Dec 9. PMID: 39653042. https://pubmed.ncbi.nlm.nih.gov/39653042/

Phase-dependent trends in the prevalence of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) related to long COVID: A criteria-based retrospective study in Japan

Abstract:

Background: The characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) related to COVID-19 have remained uncertain. To elucidate the clinical trend of ME/CFS induced by long COVID, we examined data for patients who visited our outpatient clinic established in a university hospital during the period from Feb 2021 to July 2023.

Methods: Long COVID patients were classified into two groups, an ME/CFS group and a non-ME/CFS group, based on three diagnostic criteria.

Results: The prevalence of ME/CFS in the long COVID patients was 8.4% (62 of 739 cases; female: 51.6%) and factors related to ME/CFS were severe illness, smoking and alcohol drinking habits, and fewer vaccinations. The frequency of ME/CFS decreased from 23.9% in the Preceding period to 13.7% in the Delta-dominant period and to 3.3% in the Omicron-dominant period. Fatigue and headache were commonly frequent complaints in the ME/CFS group, and the frequency of poor concentration in the ME/CFS group was higher in the Omicron period. Serum ferritin levels were significantly higher in female patients in the ME/CFS group infected in the Preceding period. In the ME/CFS group, the proportion of patients complaining of brain fog significantly increased from 22.2% in the Preceding period to 47.9% in the Delta period and to 81.3% in the Omicron period. The percentage of patients who had received vaccination was lower in the ME/CFS group than the non-ME/CFS group over the study period, whereas there were no differences in the vaccination rate between the groups in each period.

Conclusion: The proportion of long COVID patients who developed ME/CFS strictly diagnosed by three criteria was lower among patients infected in the Omicron phase than among patients infected in the other phases, while the proportion of patients with brain fog inversely increased. Attention should be paid to the variant-dependent trends of ME/CFS triggered by long COVID (300 words).

Source: Morita S, Tokumasu K, Otsuka Y, Honda H, Nakano Y, Sunada N, Sakurada Y, Matsuda Y, Soejima Y, Ueda K, Otsuka F. Phase-dependent trends in the prevalence of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) related to long COVID: A criteria-based retrospective study in Japan. PLoS One. 2024 Dec 9;19(12):e0315385. doi: 10.1371/journal.pone.0315385. PMID: 39652555; PMCID: PMC11627433. https://pmc.ncbi.nlm.nih.gov/articles/PMC11627433/ (Full text)

Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function

Abstract:

Aims: Long-COVID occurs after SARS-CoV-2 infection and results in diverse, prolonged symptoms. The present study aimed to unveil potential mechanisms, and to inform prognosis and treatment.

Methods: Plasma proteome from Long-COVID outpatients was analyzed in comparison to matched acutely ill COVID-19 (mild and severe) inpatients and healthy control subjects. The expression of 3072 protein biomarkers was determined with proximity extension assays and then deconvoluted with multiple bioinformatics tools into both cell types and signaling mechanisms, as well as organ specificity.

Results: Compared to age- and sex-matched acutely ill COVID-19 inpatients and healthy control subjects, Long-COVID outpatients showed natural killer cell redistribution with a dominant resting phenotype, as opposed to active, and neutrophils that formed extracellular traps. This potential resetting of cell phenotypes was reflected in prospective vascular events mediated by both angiopoietin-1 (ANGPT1) and vascular-endothelial growth factor-A (VEGFA). Several markers (ANGPT1, VEGFA, CCR7, CD56, citrullinated histone 3, elastase) were validated by serological methods in additional patient cohorts. Signaling of transforming growth factor-β1 with probable connections to elevated EP/p300 suggested vascular inflammation and tumor necrosis factor-α driven pathways. In addition, a vascular proliferative state associated with hypoxia inducible factor 1 pathway suggested progression from acute COVID-19 to Long-COVID. The vasculo-proliferative process predicted in Long-COVID might contribute to changes in the organ-specific proteome reflective of neurologic and cardiometabolic dysfunction.

Conclusions: Taken together, our findings point to a vasculo-proliferative process in Long-COVID that is likely initiated either prior hypoxia (localized or systemic) and/or stimulatory factors (i.e., cytokines, chemokines, growth factors, angiotensin, etc). Analyses of the plasma proteome, used as a surrogate for cellular signaling, unveiled potential organ-specific prognostic biomarkers and therapeutic targets.

Source: Iosef C, Knauer MJ, Nicholson M, Van Nynatten LR, Cepinskas G, Draghici S, Han VKM, Fraser DD. Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J Transl Med. 2023 Jun 10;21(1):377. doi: 10.1186/s12967-023-04149-9. PMID: 37301958; PMCID: PMC10257382. https://pmc.ncbi.nlm.nih.gov/articles/PMC10257382/ (Full text)

Patient-Reported Treatment Outcomes in ME/CFS and Long COVID

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID are persistent multi-system illnesses affecting many patients. With no known effective FDA-approved treatments for either condition, patient-reported outcomes of treatments are invaluable for guiding management strategies in patient care and generating new avenues for research. Here, we present the results of an ME/CFS and Long COVID treatment survey with responses from 3,925 patients.

We assessed the experiences of these patients with more than 150 treatments, as well as their demographics, symptoms, and comorbidities. Patients with each condition who participated in the study shared similar symptom profiles, including all the core symptoms of ME/CFS, e.g., 89.7% of ME/CFS and 79.4% of Long COVID reported post-exertional malaise (PEM). Treatments with the greatest perceived benefits were identified, which had varied effects on different core symptoms.

In addition, treatment responses were significantly correlated (R² = 0.68) between the two patient groups. Patient subgroups with distinct profiles of symptoms and comorbidities showed varied responses to treatments, e.g., a POTS-dominant cluster benefiting from autonomic modulators and a cognitive-dysfunction cluster from CNS stimulants.

This study underscores the symptomatic and therapeutic similarities between ME/CFS and Long COVID and highlights the commonalities and nuanced complexities of infection-associated chronic diseases and related conditions. Insights from patient-reported experiences, in the absence of approved treatments, provide urgently needed real-world evidence for targeted therapies in patient care and for developing future clinical trials.

Source: Martha EckeyPeng LiBraxton MorrisonRonald W DavisWenzhong Xiao. Patient-Reported Treatment Outcomes in ME/CFS and Long COVID.

Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses

Abstract:

Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients.

Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway.

The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers.

Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients.

In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN.

We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.

Source: Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun. 2024 Nov 28:S0889-1591(24)00720-7. doi: 10.1016/j.bbi.2024.11.031. Epub ahead of print. PMID: 39615604. https://www.sciencedirect.com/science/article/abs/pii/S0889159124007207

Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients

Abstract:

A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls.

We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function.

Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses.

Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.

Source: Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun. 2024 Nov 28:S0889-1591(24)00721-9. doi: 10.1016/j.bbi.2024.11.032. Epub ahead of print. PMID: 39615603. https://www.sciencedirect.com/science/article/pii/S0889159124007219 (Full text)

Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19

Abstract:

SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes.

Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.

Source: Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe. 2024 Nov 26:S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007. Epub ahead of print. PMID: 39615487. https://www.sciencedirect.com/science/article/pii/S1931312824004384 (Full text)

Plasma taurine level is linked to symptom burden and clinical outcomes in post-COVID condition

Abstract:

Background: A subset of individuals (10-20%) experience post-COVID condition (PCC) subsequent to initial SARS-CoV-2 infection, which lacks effective treatment. PCC carries a substantial global burden associated with negative economic and health impacts. This study aims to evaluate the association between plasma taurine levels with self-reported symptoms and adverse clinical outcomes in patients with PCC.

Methods and findings: We analyzed the plasma proteome and metabolome of 117 individuals during their acute COVID-19 hospitalization and at the convalescence phase six-month post infection. Findings were compared with 28 age and sex-matched healthy controls. Plasma taurine levels were negatively associated with PCC symptoms and correlated with markers of inflammation, tryptophan metabolism, and gut dysbiosis. Stratifying patients based on the trajectories of plasma taurine levels during six-month follow-up revealed a significant association with adverse clinical events. Increase in taurine levels during the transition to convalescence were associated with a reduction in adverse events independent of comorbidities and acute COVID-19 severity. In a multivariate analysis, increased plasma taurine level between acute and convalescence phase was associated with marked protection from adverse clinical events with a hazard ratio of 0.13 (95% CI: 0.05-0.35; p<0.001).

Conclusions: Taurine emerges as a promising predictive biomarker and potential therapeutic target in PCC. Taurine supplementation has already demonstrated clinical benefits in various diseases and warrants exploration in large-scale clinical trials for alleviating PCC.

Source: Khoramjoo M, Wang K, Srinivasan K, Gheblawi M, Mandal R, Rousseau S, Wishart D, Prasad V, Richer L, Cheung AM, Oudit GY. Plasma taurine level is linked to symptom burden and clinical outcomes in post-COVID condition. PLoS One. 2024 Jun 5;19(6):e0304522. doi: 10.1371/journal.pone.0304522. PMID: 38837993; PMCID: PMC11152273. https://pmc.ncbi.nlm.nih.gov/articles/PMC11152273/ (Full text)

The effects of 3-month supplementation with synbiotic on patient-reported outcomes, exercise tolerance, and brain and muscle metabolism in adult patients with post-COVID-19 chronic fatigue syndrome (STOP-FATIGUE): a randomized Placebo-controlled clinical trial

Abstract:

Purpose: Considering the observed gastrointestinal issues linked to post-COVID-19 myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), beneficially modulating the gut microbiota could offer a safe, cost-effective nutritional strategy. This trial aimed to evaluate the effects of medium-term synbiotic supplementation on patient-reported outcomes, exercise tolerance, and tissue metabolism in patients with post-COVID-19 ME/CFS.

Methods: Between September 2022 and December 2023, we investigated the impact of 3-month supplementation with a synbiotic mixture including L. rhamnosus DSM 32550, Humiome® L. plantarum DSM 34532, B. lactis DSM 32269, B. longum DSM 32946, fructooligosaccharides and zinc, on predetermined primary and secondary outcome measures in twenty six post-COVID-19 ME/CFS patients utilizing a parallel-group, randomized, placebo-controlled, double-blind design.

Results: Both the synbiotic and placebo intake resulted in a significant reduction in general fatigue after 3 months compared to the baseline values (P ≤ 0.05). This was accompanied by a significant interaction effect (time vs. treatment) for post-exercise malaise (P = 0.02), with synbiotic superior to placebo to attenuate post-exercise malaise. The synbiotic also demonstrated a significant advantage over placebo in increasing choline levels at the thalamus (P = 0.02), and creatine levels at left frontal white matter (P = 0.05) and left frontal grey matter (P = 0.04).

Conclusion: Taking the synbiotic mixture for three months improves tissue metabolism and mitigates clinical features of post-COVID-19 fatigue syndrome. The presented data show promise in addressing the widespread issue of ME/CFS following the COVID-19 pandemic; however, further validation is needed before endorsing the synbiotics within this clinical context. The study is registered at ClinicalTrials.gov (NCT06013072).

Source: Ranisavljev M, Stajer V, Todorovic N, Ostojic J, Cvejic JH, Steinert RE, Ostojic SM. The effects of 3-month supplementation with synbiotic on patient-reported outcomes, exercise tolerance, and brain and muscle metabolism in adult patients with post-COVID-19 chronic fatigue syndrome (STOP-FATIGUE): a randomized Placebo-controlled clinical trial. Eur J Nutr. 2024 Nov 26;64(1):28. doi: 10.1007/s00394-024-03546-0. PMID: 39592468. https://pubmed.ncbi.nlm.nih.gov/39592468/

Red Blood Cell Morphology Is Associated with Altered Hemorheological Properties and Fatigue in Patients with Long COVID

Simple Summary:
SARS-CoV-2 alters the properties of oxygen-carrying red blood cells (RBCs) through a possible deterioration of hemorheological properties, such as aggregation and deformability. However, long-term changes in these properties and a possible association with morphological abnormalities remain unknown. Therefore, this study aims to investigate changes in the above-mentioned RBC properties in Long-COVID (LC). Venous blood was collected from n = 30 diagnosed LC and n = 30 non-Long-COVID controls (non-LC). Hematological parameters were measured, as well as the aggregation, deformability, and morphology of the RBCs and the mechanical sensitivity index (MS), which reflects the functional capacity of RBCs to deform. The results indicate that hematological parameters were not altered in LC. However, LC showed higher overall aggregation parameters. RBC deformability was higher in LC compared to non-LC; however, MS was limited in this group. LC showed a higher percentage of RBCs with abnormal shapes, which was related to MS and to fatigue, which is considered the leading symptom of LC. It is concluded that the symptoms of LC and changes in the blood flow determining the properties of RBCs are related to the morphological changes in RBCs. Future studies should investigate the underlying causes in order to develop appropriate therapies for this relatively new disease.
Abstract:

Background: SARS-CoV-2 infection adversely affects rheological parameters, particularly red blood cell (RBC) aggregation and deformability, but whether these changes persist in patients suffering from Long-COVID (LC) and whether these changes are related to RBC morphology remain unknown.
Methods: Venous blood was collected from n = 30 diagnosed LC patients and n = 30 non-LC controls and RBC deformability, RBC aggregation, and hematological parameters were measured. In addition, RBCs were examined microscopically for morphological abnormalities. The mechanical sensitivity index (MS) was assessed in n = 15 LC and n = 15 non-LC samples.
Results: Hematological parameters did not differ between the groups. However, LC showed higher aggregation-related parameters. Although RBC deformability was higher in LC, MS, reflecting the functional capacity to deform, was limited in this group. RBCs from LC showed significantly more morphological abnormalities. The extent of morphological abnormalities correlated with MS and the FACIT-Fatigue score of the LC patients.
Conclusion: RBCs from LC show a high degree of morphological abnormalities, which might limit the blood flow determining RBC properties and also be related to fatigue symptomatology in LC. Approaches are now needed to understand the underlying cause of these alterations and to ameliorate these permanent changes.
Source: Grau M, Presche A, Krüger A-L, Bloch W, Haiduk B. Red Blood Cell Morphology Is Associated with Altered Hemorheological Properties and Fatigue in Patients with Long COVID. Biology. 2024; 13(11):948. https://doi.org/10.3390/biology13110948 https://www.mdpi.com/2079-7737/13/11/948 (Full text)