Sex differences in symptomatology and immune profiles of Long COVID

Abstract:

Strong sex differences in the frequencies and manifestations of Long COVID (LC) have been reported with females significantly more likely than males to present with LC after acute SARS-CoV-2 infection1-7. However, whether immunological traits underlying LC differ between sexes, and whether such differences explain the differential manifestations of LC symptomology is currently unknown.

Here, we performed sex-based multi-dimensional immune-endocrine profiling of 165 individuals8 with and without LC in an exploratory, cross-sectional study to identify key immunological traits underlying biological sex differences in LC.

We found that female and male participants with LC experienced different sets of symptoms, and distinct patterns of organ system involvement, with female participants suffering from a higher symptom burden. Machine learning approaches identified differential sets of immune features that characterized LC in females and males. Males with LC had decreased frequencies of monocyte and DC populations, elevated NK cells, and plasma cytokines including IL-8 and TGF-β-family members.

Females with LC had increased frequencies of exhausted T cells, cytokine-secreting T cells, higher antibody reactivity to latent herpes viruses including EBV, HSV-2, and CMV, and lower testosterone levels than their control female counterparts. Testosterone levels were significantly associated with lower symptom burden in LC participants over sex designation.

These findings suggest distinct immunological processes of LC in females and males and illuminate the crucial role of immune-endocrine dysregulation in sex-specific pathology.

Source: Julio Silva, Takehiro Takahashi, Jamie Wood, Peiwen Lu, Sasha Tabachnikova, Jeffrey Gehlhausen, Kerrie Greene, Bornali Bhattacharjee, Valter Silva Monteiro, Carolina Lucas, Rahul Dhodapkar, Laura Tabacof, Mario Pena-Hernandez, Kathy Kamath, Tianyang Mao, Dayna Mccarthy, Ruslan Medzhitov, David van Dijk, Harlan Krumholz, Leying Guan, David Putrino, Akiko Iwasaki. Sex differences in symptomatology and immune profiles of Long COVID. medRxiv 2024.02.29.24303568; doi: https://doi.org/10.1101/2024.02.29.24303568 https://www.medrxiv.org/content/10.1101/2024.02.29.24303568v1 (Full study available as PDF file)

Immune cell exhaustion, dysfunction, and metabolism in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract;
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic and incapacitating multisystem condition with unknown etiology, no cure, and no FDA- approved treatments, all of which can be attributed to historical underfunding, widespread misinformation, and the complexity of the disease. Many patients encounter several immune-related symptoms, extreme fatigue, post-exertional malaise, and a flu-like onset. Studies have documented changes in ME/CFS immune cell populations and decreased natural killer (NK) cell performance, along with aberrant cytokine production, reduced glycolysis in T cells, and altered metabolites relevant to fatty acid oxidation, implicating potential intracellular metabolic dysregulation.
This knowledge prompted me to investigate fatty acid oxidation and immune cell functional states in isolated ME/CFS lymphocytes. Using extracellular flux analysis and flow cytometry, I observed elevated fatty acid oxidation levels in ME/CFS immune cells, including NK cells, CD4+ memory cells, CD4+ effector cells, CD8+ naïve cells, and CD8+ memory cells compared to healthy controls, particularly during high energy demands and activation. My findings suggest a metabolic dysfunction in ME/CFS immune cells, consistent with T cell exhaustion – a state that hinders immune cell proliferation, survival, and cytokine production following persistent antigen stimulation.
Building upon these results, I further investigated immune cell exhaustion and dysfunction in isolated CD8+ and CD4+ T cells from ME/CFS and healthy samples. I analyzed T cell sub-populations, including naïve, effector, memory, regulatory, and helper T cells, for frequencies of inhibitory receptors and transcription factors associated with dysfunctional immune cell states.
I detected distinct transcription factor dynamics and elevated exhausted T cell phenotype proportions in ME/CFS CD8+ T cell populations compared to healthy controls. In ME/CFS CD4+ T cells, I also observed altered inhibitory receptor population frequencies compared to healthy control samples. Moreover, dysfunctional T cell features correlated with ME/CFS health status and symptom presentation.
Overall, my findings detect dysfunctional T cell states in specific ME/CFS cell populations, which can lead to reduced effector function that may contribute to ME/CFS symptom presentation. This work highlights the significance of assessing both metabolic components and immune cell dysfunction-associated targets in the development of potential therapeutic interventions for individuals with ME/CFS.
Source: Maya, Jessica. Immune cell exhaustion, dysfunction, and metabolism in myalgic encephalomyelitis/chronic fatigue syndrome. Cornell Theses and Dissertations. 2024. https://ecommons.cornell.edu/items/242f8723-6f87-47cc-b36d-bf51a21f4255

Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity

Abstract:

Background: Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs).

Methods: Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge.

Results: We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts.

Conclusion: Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.

Source: Berentschot Julia C., Drexhage Hemmo A., Aynekulu Mersha Daniel G., Wijkhuijs Annemarie J. M., GeurtsvanKessel Corine H., Koopmans Marion P. G., Voermans Jolanda J. C., Hendriks Rudi W., Nagtzaam Nicole M. A., de Bie Maaike, Heijenbrok-Kal Majanka H., Bek L. Martine, Ribbers Gerard M., van den Berg-Emons Rita J. G., Aerts Joachim G. J. V., Dik Willem A., Hellemons Merel E. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Frontiers in Immunology, vol 14, 2023. DOI=10.3389/fimmu.2023.1254899 ISSN=1664-3224 https://www.frontiersin.org/articles/10.3389/fimmu.2023.1254899/full (Full text)

 

Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID?

Abstract:

Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies.

Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with “weak” EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity.

Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with “weak” HLA-II haplotypes against this virus and/or EBV.

Source: Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med. 2023 Sep 17;21(1):633. doi: 10.1186/s12967-023-04515-7. PMID: 37718435. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04515-7 (Full text)

Thromboembolism in the Complications of Long COVID-19

Abstract:

SARS-CoV-2 is a +ssRNA helical coronavirus responsible for the global pandemic caused by coronavirus disease 19 (COVID-19). Classical clinical symptoms from primary COVID-19 when symptomatic include cough, fever, pneumonia or even ARDS; however, they are limited primarily to the respiratory system. Long-COVID-19 sequalae is responsible for many pathologies in almost every organ system and may be present in up to 30% of patients who have developed COVID-19.

Our review focuses on how long-COVID-19 (3 -24 weeks after primary symptoms) may lead to an increased risk for stroke and thromboembolism. Patients who were found to be primarily at risk for thrombotic events included critically ill and immunocompromised patients. Additional risk factors for thromboembolism and stroke included diabetes, hypertension, respiratory and cardiovascular disease, and obesity.

The etiology of how long-COVID-19 leads to a hypercoagulable state are yet to be definitively elucidated. However, anti-phospholipid antibodies and elevated D-dimer are present in many patients who develop thromboembolism. In addition, chronic upregulation and exhaustion of the immune system may lead to a pro-inflammatory and hypercoagulable state, increasing the likelihood for induction of thromboembolism or stroke. ‘

This article provides an up-to-date review on the proposed etiologies for thromboembolism and stroke in patients with long-COVID-19 and to assist health care providers in examining patients who may be at a higher risk for developing these pathologies.

Source: Leilani A Lopes, Devendra K Agrawal. Thromboembolism in the Complications of Long COVID-19. Cardiology and Cardiovascular
Medicine. 7 (2023): 123-128. https://fortunepublish.com/articles/10.26502.fccm.92920317.pdf (Full text)

Unique immune and inflammatory cytokine profiles may define long COVID syndrome

Abstract:

Purpose: Long COVID is estimated to occur in 5-10% of individuals after acute SARS-CoV-2 infection. However, the pathophysiology driving the disease process is poorly understood.

Methods: We evaluated urine and plasma inflammatory and immune cytokine profiles in 33 individuals with long COVID compared to 33 who were asymptomatic and recovered, and 34 without prior infection.

Results: Mean urinary leukotriene E4 was significantly elevated among individuals with long COVID compared to asymptomatic and recovered individuals (mean difference 774.2 pg/mL; SD 335.7) and individuals without prior SARS-CoV-2 infection (mean difference 503.1 pg/ml; SD 467.7). Plasma chemokine ligand 6 levels were elevated among individuals with long COVID compared to individuals with no prior SARS-CoV-2 infection (mean difference 0.59 units; SD 0.42). We found no significant difference in angiotensin-converting enzyme 2 antibody levels. Plasma tumor necrosis factor receptor-associated factor 2 (TRAF2) levels were reduced among individuals with long COVID compared to individuals who were asymptomatic and recovered (mean difference = 0.6 units, SD 0.46). Similarly, the mean level of Sarcoma Homology 2-B adapter protein 3 was 3.3 units (SD 1.24) among individuals with long COVID, lower than 4.2 units (SD 1.1) among individuals with recovered, asymptomatic COVID.

Conclusion: Our findings suggest that further studies should be conducted to evaluate the role of leukotriene E4 as a potential biomarker for a diagnostic test. Furthermore, based on reductions in TRAF2, long COVID may be driven in part by impaired TRAF2-dependent immune-mediated inflammation and potentially immune exhaustion.

Source: Allan-Blitz LT, Akbari O, Kojima N, Saavedra E, Chellamuthu P, Denny N, MacMullan MA, Hess V, Shacreaw M, Brobeck M, Turner F, Slepnev VI, Ibrayeva A, Klausner JD. Unique immune and inflammatory cytokine profiles may define long COVID syndrome. Clin Exp Med. 2023 Apr 16:1–6. doi: 10.1007/s10238-023-01065-6. Epub ahead of print. PMID: 37061998; PMCID: PMC10105906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105906/ (Full text)

Cytokine deficiencies in patients with Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ES, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. J Clin Cell Immunol. 2022;13(6):672. Epub 2022 Nov 18. PMID: 36742994; PMCID: PMC9894377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894377/ (Full text)

Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood.

We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ESCP, Martins TB, Hill HR, Coiras M, Shah KS, Planelles V, Spivak AM. Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID. medRxiv [Preprint]. 2022 Oct 5:2022.10.03.22280661. doi: 10.1101/2022.10.03.22280661. PMID: 36238724; PMCID: PMC9558442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558442/ (Full text)

Scientists Discover Robust Evidence That Chronic Fatigue Syndrome Is a Biological Illness

cytokines
All twenty-four cytokines were altered in both long- and short-term patients compared to controls.

Press Release: NEW YORK (Feb. 27, 2015)—Researchers at the Center for Infection and Immunity at Columbia University’s Mailman School of Public Health identified distinct immune changes in patients diagnosed with chronic fatigue syndrome, known medically as myalgic encephalomyelitis (ME/CFS) or systemic exertion intolerance disease. The findings could help improve diagnosis and identify treatment options for the disabling disorder, in which symptoms range from extreme fatigue and difficulty concentrating to headaches and muscle pain.

These immune signatures represent the first robust physical evidence that ME/CFS is a biological illness as opposed to a psychological disorder, and the first evidence that the disease has distinct stages. Results appear online in the new American Association for the Advancement of Science journal, Science Advances.

With funding to support studies of immune and infectious mechanisms of disease from the Chronic Fatigue Initiative of the Hutchins Family Foundation, the researchers used immunoassay testing methods to determine the levels of 51 immune biomarkers in blood plasma samples collected through two multicenter studies that represented a total of 298 ME/CFS patients and 348 healthy controls. They found specific patterns in patients who had the disease three years or less that were not present in controls or in patients who had the disease for more than three years. Short duration patients had increased amounts of many different types of immune molecules called cytokines. The association was unusually strong with a cytokine called interferon gamma that has been linked to the fatigue that follows many viral infections, including Epstein-Barr virus (the cause of infectious mononucleosis). Cytokine levels were not explained by symptom severity.

“We now have evidence confirming what millions of people with this disease already know, that ME/CFS isn’t psychological,” states lead author Mady Hornig, MD, director of translational research at the Center for Infection and Immunity and associate professor of Epidemiology at Columbia’s Mailman School. “Our results should accelerate the process of establishing the diagnosis after individuals first fall ill as well as discovery of new treatment strategies focusing on these early blood markers.”

There are already human monoclonal antibodies on the market that can dampen levels of a cytokine called interleukin-17A that is among those the study shows were elevated in early-stage patients. Before any drugs can be tested in a clinical trial, Dr. Hornig and colleagues hope to replicate the current, cross-sectional results in a longitudinal study that follows patients for a year to see how cytokine levels, including interleukin-17A, differ within individual patients over time, depending on how long they have had the disease.

Stuck in High Gear

The study supports the idea that ME/CFS may reflect an infectious “hit-and-run” event. Patients often report getting sick, sometimes from something as common as infectious mononucleosis (Epstein-Barr virus), and never fully recover. The new research suggests that these infections throw a wrench in the immune system’s ability to quiet itself after the acute infection, to return to a homeostatic balance; the immune response becomes like a car stuck in high gear. “It appears that ME/CFS patients are flush with cytokines until around the three-year mark, at which point the immune system shows evidence of exhaustion and cytokine levels drop,” says Dr. Hornig. “Early diagnosis may provide unique opportunities for treatment that likely differ from those that would be appropriate in later phases of the illness.”

The investigators went to great lengths to carefully screen participants to make sure they had the disease. The researchers also recruited greater numbers of patients whose diagnosis was of relatively recent onset. Patients’ stress levels were standardized; before each blood draw, patients were asked to complete standardized paperwork, in part to engender fatigue. The scientists also controlled for factors known to affect the immune system, including the time of day, season and geographic location where the samples were taken, as well as age, sex and ethnicity/race.

In 2012, W. Ian Lipkin, MD, director of the Center for Infection and Immunity, and colleagues reported the results of a multicenter study that definitively ruled out two viruses thought to be implicated in ME/CFS: XMRV (xenotropic murine leukemia virus [MLV]-related virus) and murine retrovirus-like sequences (designated pMLV: polytropic MLV). In the coming weeks, Drs. Hornig and Lipkin expect to report the results of a second study of cerebrospinal fluid from ME/CFS patients. In separate ongoing studies, they are looking for “molecular footprints” of the specific agents behind the disease—be they viral, bacterial, or fungal—as well as the longitudinal look at how plasma cytokine patterns change within ME/CFS patients and controls across a one-year period, as noted above.

“This study delivers what has eluded us for so long: unequivocal evidence of immunological dysfunction in ME/CFS and diagnostic biomarkers for disease,” says senior author W. Ian Lipkin, MD, also the John Snow Professor of Epidemiology at Columbia’s Mailman School. “The question we are trying to address in a parallel microbiome project is what triggers this dysfunction.”

Co-authors include Andrew F. Schultz, Xiaoyu Che, and Meredith L. Eddy at the Center for Infection and Immunity; Jose G. Montoya at Stanford University; Anthony L. Komaroff at Harvard Medical School; Nancy G. Klimas at Nova Southeastern University; Susan Levine at Levine Clinic; Donna Felsenstein at Massachusetts General Hospital; Lucinda Bateman at Fatigue Consultation Clinic; and Daniel L. Peterson and Gunnar Gottschalk at Sierra Internal Medicine. The authors report no competing interests.

Support for the study was provided by the Chronic Fatigue Initiative of the Hutchins Family Foundation and the National Institutes of Health (AI057158; Northeast Biodefense Center-Lipkin).

About Columbia University’s Mailman School of Public Health

Founded in 1922, Columbia University’s Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting New Yorkers, the nation and the world. The Mailman School is the third largest recipient of NIH grants among schools of public health. Its over 450 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as preventing infectious and chronic diseases, environmental health, maternal and child health, health policy, climate change & health, and public health preparedness. It is a leader in public health education with over 1,300 graduate students from more than 40 nations pursuing a variety of master’s and doctoral degree programs. For more information, please visit www.mailman.columbia.edu.

# # #

Media contact: Tim Paul, Columbia University’s Mailman School of Public Health, 212-305-2676 or tp2111@columbia.edu.

Note: You can read the full text of the Columbia study HERE.