Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI

Abstract:

Neurological symptoms are central to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), yet its underlying neurophysiological mechanisms remain elusive. We examined a neglected aspect of task-based functional MRI, focusing on how blood oxygenation level-dependent (BOLD) signals alter during cognitive tasks in ME/CFS.

This prospective observational study utilised MRI scans on ME/CFS participants and healthy controls (HCs) with sedentary lifestyles (ACTRN12622001095752). Participants completed two blocks of a Symbol Digit Modalities Test, with 30 trials per block split into two sets. The fMRI signal changes between blocks and sets were compared within and between groups. Thirty-four ME/CFS participants (38 years ± 10; 27 women) and 34 HCs (38 ± 10; 27 women), were evaluated.

In the second task block, ME/CFS participants exhibited increased activation in the right postcentral gyrus, contrasting with decreased activation in multiple regions in HCs. These results were further confirmed by significantly higher bilateral dynamic changes (2nd vs 1st set) in the motor, sensory and cognitive cortex in ME/CFS compared to HCs and significant correlations between those changes in the left primary motor cortex with fatigue severities. BOLD adaptation, potentially improving energy economy, was absent in ME/CFS, which may provide an underlying neurophysiological process in ME/CFS.

Source: Schönberg L, Mohamed AZ, Yu Q, Kwiatek RA, Del Fante P, Calhoun VD, Shan ZY. Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI. J Cereb Blood Flow Metab. 2024 Aug 7:271678X241270528. doi: 10.1177/0271678X241270528. Epub ahead of print. PMID: 39113421. https://journals.sagepub.com/doi/10.1177/0271678X241270528 (Full text)

Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses

Abstract:

(1) Background: Macrophagic myofasciitis (MMF) is an inflammatory histopathological lesion demonstrating long-term biopersistence of vaccine-derived aluminum adjuvants within muscular phagocytic cells. Affected patients suffer from widespread myalgia and severe fatigue consistent with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a poorly understood disorder suspected to result from chronic immune stimulation by infectious and inorganic particles.

(2) Methods: In this study we determined the immuno-metabolic properties of MMF phagocytic cells compared to controls, at rest and upon exposure to aluminum oxyhydroxide adjuvant, with or without adsorbed antigens, using protein quantification and an oxygen consumption assay.

(3) Results: MMF and control cells similarly internalized the adjuvant and vaccine but MMF cells specifically expressed Rubicon and Nox2, two molecules unique to the LC3-associated phagocytosis (LAP) machinery, a non-canonical autophagic pathway able to downregulate canonical autophagy. MMF cells exhibited an altered inflammatory secretome, producing more pain-inducing CXC chemokines and less TNF-α than controls, consistent with chronic myalgia and exhaustion of the immune system previously documented in ME/CFS. MMF cells exhibited mitochondrial metabolism dysfunction, with exacerbated reaction to adjuvanted vaccine, contrasting with limited spare respiratory capacity and marked proton leak weakening energy production.

(4) Conclusions: MMF phagocytes seemingly use LAP to handle aluminum oxyhydroxide vaccine particles, secrete pain-inducing molecules, and exhibit exacerbated metabolic reaction to the vaccine with limited capacity to respond to ongoing energetic requests.

Source: Masson JD, Badran G, Gherardi RK, Authier FJ, Crépeaux G. Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses. Toxics. 2024 Jul 4;12(7):491. doi: 10.3390/toxics12070491. PMID: 39058143. https://www.mdpi.com/2305-6304/12/7/491 (Full text)

Brain microstructural changes and fatigue after COVID-19

Abstract:

Background: Fatigue and cognitive complaints are the most frequent persistent symptoms in patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to assess fatigue and neuropsychological performance and investigate changes in the thickness and volume of gray matter (GM) and microstructural abnormalities in the white matter (WM) in a group of patients with mild-to-moderate coronavirus disease 2019 (COVID-19).

Methods: We studied 56 COVID-19 patients and 37 matched controls using magnetic resonance imaging (MRI). Cognition was assessed using Montreal Cognitive Assessment and Cambridge Neuropsychological Test Automated Battery, and fatigue was assessed using Chalder Fatigue Scale (CFQ-11). T1-weighted MRI was used to assess GM thickness and volume. Fiber-specific apparent fiber density (FD), free water index, and diffusion tensor imaging data were extracted using diffusion-weighted MRI (d-MRI). d-MRI data were correlated with clinical and cognitive measures using partial correlations and general linear modeling.

Results: COVID-19 patients had mild-to-moderate acute illness (95% non-hospitalized). The average period between real-time quantitative reverse transcription polymerase chain reaction-based diagnosis and clinical/MRI assessments was 93.3 (±26.4) days. The COVID-19 group had higher total CFQ-11 scores than the control group (p < 0.001). There were no differences in neuropsychological performance between groups. The COVID-19 group had lower FD in the association, projection, and commissural tracts, but no change in GM. The corona radiata, corticospinal tract, corpus callosum, arcuate fasciculus, cingulate, fornix, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, and uncinate fasciculus were involved. CFQ-11 scores, performance in reaction time, and visual memory tests correlated with microstructural changes in patients with COVID-19.

Conclusions: Quantitative d-MRI detected changes in the WM microstructure of patients recovering from COVID-19. This study suggests a possible brain substrate underlying the symptoms caused by SARS-CoV-2 during medium- to long-term recovery.

Source: Bispo DDC, Brandão PRP, Pereira DA, Maluf FB, Dias BA, Paranhos HR, von Glehn F, de Oliveira ACP, Regattieri NAT, Silva LS, Yasuda CL, Soares AASM, Descoteaux M. Brain microstructural changes and fatigue after COVID-19. Front Neurol. 2022 Nov 10;13:1029302. doi: 10.3389/fneur.2022.1029302. PMID: 36438956; PMCID: PMC9685991. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685991/ (Full text)

Systematic review of fatigue severity in ME/CFS patients: insights from randomized controlled trials

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating illness medically unexplained, affecting approximately 1% of the global population. Due to the subjective complaint, assessing the exact severity of fatigue is a clinical challenge, thus, this study aimed to produce comprehensive features of fatigue severity in ME/CFS patients.

Methods: We systematically extracted the data for fatigue levels of participants in randomized controlled trials (RCTs) targeting ME/CFS from PubMed, Cochrane Library, Web of Science, and CINAHL throughout January 31, 2024. We normalized each different measurement to a maximum 100-point scale and performed a meta-analysis to assess fatigue severity by subgroups of age, fatigue domain, intervention, case definition, and assessment tool, respectively.

Results: Among the total of 497 relevant studies, 60 RCTs finally met our eligibility criteria, which included a total of 7088 ME/CFS patients (males 1815, females 4532, and no information 741). The fatigue severity of the whole 7,088 patients was 77.9 (95% CI 74.7-81.0), showing 77.7 (95% CI 74.3-81.0) from 54 RCTs in 6,706 adults and 79.6 (95% CI 69.8-89.3) from 6 RCTs in 382 adolescents. Regarding the domain of fatigue, ‘cognitive’ (74.2, 95% CI 65.4-83.0) and ‘physical’ fatigue (74.3, 95% CI 68.3-80.3) were a little higher than ‘mental’ fatigue (70.1, 95% CI 64.4-75.8). The ME/CFS participants for non-pharmacological intervention (79.1, 95% CI 75.2-83.0) showed a higher fatigue level than those for pharmacological intervention (75.5, 95% CI 70.0-81.0). The fatigue levels of ME/CFS patients varied according to diagnostic criteria and assessment tools adapted in RCTs, likely from 54.2 by ICC (International Consensus Criteria) to 83.6 by Canadian criteria and 54.2 by MFS (Mental Fatigue Scale) to 88.6 by CIS (Checklist Individual Strength), respectively.

Conclusions: This systematic review firstly produced comprehensive features of fatigue severity in patients with ME/CFS. Our data will provide insights for clinicians in diagnosis, therapeutic assessment, and patient management, as well as for researchers in fatigue-related investigations.

Source: Park JW, Park BJ, Lee JS, Lee EJ, Ahn YC, Son CG. Systematic review of fatigue severity in ME/CFS patients: insights from randomized controlled trials. J Transl Med. 2024 Jun 3;22(1):529. doi: 10.1186/s12967-024-05349-7. PMID: 38831460; PMCID: PMC11145935. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145935/ (Full text)

Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy

Abstract:

Post-COVID condition (PCC) and multiple sclerosis (MS) share some clinical and demographic features, including cognitive symptoms and fatigue. Some pathophysiological mechanisms well-known in MS, such as autoimmunity, neuroinflammation and myelin damage, have also been implicated in PCC. In this study, we aimed to compare the cognitive phenotypes of two large cohorts of patients with PCC and MS, and to evaluate the relationship between fatigue and cognitive performance.

Cross-sectional study including 218 patients with PCC and 218 with MS matched by age, sex, and years of education. Patients were evaluated with a comprehensive neuropsychological protocol and were categorized according to the International Classification of Cognitive Disorders system. Fatigue and depression were also assessed.

Cognitive profiles of PCC and MS largely overlapped, with a greater impairment in episodic memory in MS, but with small effect sizes. The most salient deficits in both disorders were in attention and processing speed. The severity of fatigue was greater in patients with PCC. Still, the correlations between fatigue severity and neuropsychological tests were more prominent in the case of MS. There were no differences in the severity of depression among groups. Our study found similar cognitive profiles in PCC and MS. Fatigue was more severe in PCC, but was more associated with cognitive performance in MS. Further comparative studies addressing the mechanisms related to cognitive dysfunction and fatigue may be of interest to advance the knowledge of these disorders and develop new therapies.

Source: Delgado-Alonso C, Delgado-Alvarez A, Díez-Cirarda M, Oliver-Mas S, Cuevas C, Montero-Escribano P, Ramos-Leví AM, Gil-Moreno MJ, López-Carbonero JI, Hermann BP, Matias-Guiu J, Matias-Guiu JA. Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy. Sci Rep. 2024 Apr 29;14(1):9806. doi: 10.1038/s41598-024-60368-0. PMID: 38684843; PMCID: PMC11059260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059260/ (Full text)

Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007)

Abstract:

Objective: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often experience debilitating fatigue and autonomic dysregulation, yet objective measurements of these symptoms are limited. This study utilized actigraphic data from the United Kingdom Biobank (UKBB) to investigate (1) reduced activity in those with CFS, (2) decreased amplitudes of daily temperature rhythms as a potential indicator of autonomic dysregulation, and (3) the impact of specific single nucleotide polymorphisms (SNPs) associated with CFS on these actigraphic parameters.

Background: ME/CFS is a complex and poorly understood condition characterized by profound fatigue, postural orthostasis, and temperature dysregulation. Objective metrics reflecting these fatigue-related symptoms are scarce. Previous research explored small-scale actigraphic analyses, shedding light on movement and temperature patterns in CFS, but large-scale investigations remain limited. Genetic factors have also emerged as potential contributors to CFS risk, although how they affect phenotypic manifestations remains unclear.

Design/Methods: Actigraphic data from the UKBB were analyzed to compare those with CFS (n = 295) to controls (n = 63,133). Movement parameters, acceleration amplitudes, and temperature amplitudes were assessed. Additionally, the impact of specific SNPs associated with CFS on actigraphic measurements and subjective fatigue experiences was examined.

Results: In addition to profound fatigue, those with CFS exhibited significantly reduced overall movement (Cohen’s d = −0.220, p-value = 2.42 × 10–15), lower acceleration amplitudes (Cohen’s d = −0.377, p-value = 1.74 × 10−6), and decreased temperature amplitudes (Cohen’s d = −0.173, p-value = 0.002) compared to controls. Furthermore, certain SNPs associated with CFS were found to significantly influence both actigraphic measurements and subjective fatigue experiences.

Conclusions: This study provides valuable insights into the objective characterization of CFS using actigraphy, shedding light on the interaction between genetics and symptomatology in CFS. The findings offer avenues for further research into the pathophysiology of CFS and may contribute to a better understanding of fatigue-related conditions in general.

Source: Patrick Liu, David Raizen, Carsten Skarke, Thomas Brooks, and Ron Anafi. Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007). Neurology, April 9, 2024 issue
102 (17_supplement_1) https://doi.org/10.1212/WNL.0000000000204829 https://www.neurology.org/doi/abs/10.1212/WNL.0000000000204829

Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID

Abstract:

Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, ‘fibrinaloid’ microclots.
We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body’s exaggerated ‘physiological’ response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term ‘fatigue’.
Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Source: Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. Journal of Personalized Medicine. 2024; 14(2):170. https://doi.org/10.3390/jpm14020170 https://www.mdpi.com/2075-4426/14/2/170 (Full text)

Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome

Abstract:

Background: Fatigue of unknown origin is a hallmark symptom in chronic fatigue syndrome (CFS) and is also found in 20% of hypothyroidism patients despite appropriate levothyroxine treatment. Here, we suggest that in these disorders, peripheral serotonin levels are low, and elevating them to normal range with L-carnitine is accompanied with reduced fatigue.

Methods: We conducted a retrospective analysis of follow-up clinical data (CFS N=12; hypothyroidism with fatigue N=40) where serum serotonin and fatigue levels were compared before vs. after 7 weeks of oral L-carnitine supplementation.

Results: After L-carnitine, serotonin increased (8-fold in CFS, Sig. = 0.002, 6-fold in hypothyroidism, Sig. < 0.001) whereas fatigue decreased (2-fold in both CFS and hypothyroidism, Sig. = 0.002 for CFS, Sig. < 0.001 for hypothyroidism). There was a negative correlation between serotonin level and fatigue (for CFS, rho = -0.49 before and -0.67 after L-carnitine; for hypothyroidism, rho = -0.24 before and -0.83 after L-carnitine).

Conclusions: These findings suggest a new link between low peripheral serotonin, L-carnitine, and fatigue.

Source: Tommi Raij, Kari Raij. Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome. Front. Endocrinol. Sec. Neuroendocrine Science, Volume 15 – 2024 | doi: 10.3389/fendo.2024.1358404 https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1358404/abstract

Fatigue and symptom-based clusters in post COVID-19 patients: a multicentre, prospective, observational cohort study

Abstract:

Background: In the Netherlands, the prevalence of post COVID-19 condition is estimated at 12.7% at 90-150 days after SARS-CoV-2 infection. This study aimed to determine the occurrence of fatigue and other symptoms, to assess how many patients meet the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) criteria, to identify symptom-based clusters within the P4O2 COVID-19 cohort and to compare these clusters with clusters in a ME/CFS cohort.

Methods: In this multicentre, prospective, observational cohort in the Netherlands, 95 post COVID-19 patients aged 40-65 years were included. Data collection at 3-6 months after infection included demographics, medical history, questionnaires, and a medical examination. Follow-up assessments occurred 9-12 months later, where the same data were collected. Fatigue was determined with the Fatigue Severity Scale (FSS), a score of ≥ 4 means moderate to high fatigue. The frequency and severity of other symptoms and the percentage of patients that meet the ME/CFS criteria were assessed using the DePaul Symptom Questionnaire-2 (DSQ-2). A self-organizing map was used to visualize the clustering of patients based on severity and frequency of 79 symptoms. In a previous study, 337 Dutch ME/CFS patients were clustered based on their symptom scores. The symptom scores of post COVID-19 patients were applied to these clusters to examine whether the same or different clusters were found.

Results: According to the FSS, fatigue was reported by 75.9% of the patients at 3-6 months after infection and by 57.1% of the patients 9-12 months later. Post-exertional malaise, sleep disturbances, pain, and neurocognitive symptoms were also frequently reported, according to the DSQ-2. Over half of the patients (52.7%) met the Fukuda criteria for ME/CFS, while fewer patients met other ME/CFS definitions. Clustering revealed specific symptom patterns and showed that post COVID-19 patients occurred in 11 of the clusters that have been observed in the ME/CFS cohort, where 2 clusters had > 10 patients.

Conclusions: This study shows persistent fatigue and diverse symptomatology in post COVID-19 patients, up to 12-18 months after SARS-CoV-2 infection. Clustering showed that post COVID-19 patients occurred in 11 of the clusters that have been observed in the ME/CFS cohort.

Source: Cornelissen MEB, Bloemsma LD, Vaes AW, Baalbaki N, Deng Q, Beijers RJHCG, Noij LCE, Houweling L, Bazdar S, Spruit MA, Maitland-van der Zee AH; on behalf of the P4O2 Consortium. Fatigue and symptom-based clusters in post COVID-19 patients: a multicentre, prospective, observational cohort study. J Transl Med. 2024 Feb 21;22(1):191. doi: 10.1186/s12967-024-04979-1. PMID: 38383493. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-04979-1 (Full text)

NIH study offers new clues into the causes of post-infectious ME/CFS

Press Release:

In a detailed clinical study, researchers at the National Institutes of Health have found differences in the brains and immune systems of people with post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS). They also found distinct differences between men and women with the disease. The findings were published in Nature Communications.

“People with ME/CFS have very real and disabling symptoms, but uncovering their biological basis has been extremely difficult,” said Walter Koroshetz, M.D., director of NIH’s National Institute of Neurological Disorders and Stroke (NINDS). “This in-depth study of a small group of people found a number of factors that likely contribute to their ME/CFS. Now researchers can test whether these findings apply to a larger patient group and move towards identifying treatments that target core drivers of the disease.”

A team of multidisciplinary researchers discovered how feelings of fatigue are processed in the brains of people with ME/CFS. Results from functional magnetic resonance imaging (fMRI) brain scans showed that people with ME/CFS had lower activity in a brain region called the temporal-parietal junction (TPJ), which may cause fatigue by disrupting the way the brain decides how to exert effort.

They also analyzed spinal fluid collected from participants and found abnormally low levels of catecholamines and other molecules that help regulate the nervous system in people with ME/CFS compared to healthy controls. Reduced levels of certain catecholamines were associated with worse motor performance, effort-related behaviors, and cognitive symptoms. These findings, for the first time, suggest a link between specific abnormalities or imbalances in the brain and ME/CFS.

“We think that the immune activation is affecting the brain in various ways, causing biochemical changes and downstream effects like motor, autonomic, and cardiorespiratory dysfunction,” said Avindra Nath, M.D., clinical director at NINDS and senior author of the study.

Immune testing revealed that the ME/CFS group had higher levels of naive B cells and lower levels of switched memory B cells—cells that help the immune system fight off pathogens—in blood compared to healthy controls. Naive B cells are always present in the body and activate when they encounter any given antigen, a foreign substance that triggers the immune system. Memory B cells respond to a specific antigen and help maintain adaptive or acquired immunity. More studies are needed to determine how these immune markers relate to brain dysfunction and fatigue in ME/CFS.

To study fatigue, Dr. Nath and his team asked participants to make risk-based decisions about exerting physical effort. This allowed them to assess the cognitive aspects of fatigue, or how an individual decides how much effort to exert when given a choice. People with ME/CFS had difficulties with the effort choice task and with sustaining effort. The motor cortex, a brain region in charge of telling the body to move, also remained abnormally active during fatiguing tasks. There were no signs of muscle fatigue. This suggests that fatigue in ME/CFS could be caused by a dysfunction of brain regions that drive the motor cortex, such as the TPJ.

“We may have identified a physiological focal point for fatigue in this population,” said Brian Walitt, M.D., M.P.H., associate research physician at NINDS and first author of the study. “Rather than physical exhaustion or a lack of motivation, fatigue may arise from a mismatch between what someone thinks they can achieve and what their bodies perform.”

Deeper analyses revealed differences between men and women in gene expression patterns, immune cell populations, and metabolic markers. Males had altered T cell activation, as well as markers of innate immunity, while females had abnormal B cell and white blood cell growth patterns. Men and women also had distinct markers of inflammation.

“Men and women were quite divergent in their data, and that tells you that ME/CFS is not one-size-fits-all,” said Dr. Nath. “Considering male and female immune differences in ME/CFS, the results may open up new avenues of research that could provide insight into other infection-associated chronic diseases.”

The study, which was conducted at the NIH Clinical Center, took a comprehensive look at ME/CFS that developed after a viral or bacterial infection. The team used state-of-the-art techniques to examine 17 people with PI-ME/CFS who had been sick for less than five years and 21 healthy controls. Participants were screened and medically evaluated for ME/CFS over several days and underwent extensive tests, including clinical exams, fMRI brain imaging, physical and cognitive performance tests, autonomic function tests, skin and muscle biopsies, and advanced analyses of blood and spinal fluid. Participants also spent time in metabolic chambers where, under controlled conditions, their diet, energy consumption, metabolism, sleep patterns, and gut microbiome were evaluated. During a second visit, they completed a cardiopulmonary exercise test to measure the body’s response to exercise.

Many studies have identified immunemicrobiome, and other abnormalities in ME/CFS, but the results tend to be inconsistent and exactly how these markers relate to or cause fatigue and other symptoms is unknown. By using a rigorous phenotyping approach to pull out meaningful differences, this study helps validate prior results and may identify new ways to target the brain or immune system therapeutically.

The highly collaborative project involved 75 investigators across 15 institutes and centers in the NIH Intramural Research Program, and at national and international institutions. Dr. Nath and his colleagues plan to publish additional findings from the data that was collected during this study.

The study was supported in part by the Intramural Research Program at the NIH.

Article:

Walitt, B., et al. “Deep phenotyping of Post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.” Nature Communications. February 21, 2024. DOI: 10.1038/s41467-024-45107-3


NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the NIH website.