Confirmed: The Conclusion by NICE that CBT is not an Effective Treatment for ME/CFS; Re-Analysis of a Systematic Review

Abstract:

In this article, we analyzed the systematic review by Kuut et al. into the efficacy of cognitive behavioral therapy (CBT) for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disease that predominantly affects women, and the eight trials
in it. We found many issues with the studies in the review, but also with the review itself.

For example, the systematic review by Kuut et al. included a researcher who was involved in seven of the eight studies in their review, and another one who was involved in five of them. Moreover, at least one of them was involved in every study in the review. On top of that, the three professors who were involved in the systematic review, have all built their career on the CB model and the reversibility of ME/CFS through CBT and GET and two of the systematic reviewers have a potential financial conflict of interest. Yet they failed to inform the readers about these conflicts of interest. Conducting a review in this manner and not informing the readers, undermines the credibility of a systematic review and its conclusion.

Regarding outcome differences between treatment and control group, it’s highly likely that the combination of non-blinded
trials, subjective outcomes and poorly chosen control groups, alone or together with response shift bias and/or patients filling in questionnaires in a manner to please the investigators, allegiance bias, small study effect bias and other forms of bias,
produced the appearance of positive effects, despite the lack of any substantial benefit to the patients, leading to the erroneous inference of efficacy in its absence. That CBT is not an effective treatment is highlighted by the fact that patients remained
severely disabled after treatment with it.

The absence of objective improvement as shown by the actometer, employment status and objective cognitive measures, confirms the inefficacy of CBT for ME/CFS. The systematic review did not report on safety but research by the Oxford Brookes University shows that CBT, which contains an element of graded exercise therapy, is harmful for many patients. Finally, our reanalysis highlights the fact that researchers should not mark their own homework.

Source: Vink M, Vink-Niese A. Confirmed: The Conclusion by NICE that CBT is not an Effective Treatment for ME/CFS; Re-Analysis of a Systematic Review. SciBase Neurol. 2024; 2(3): 1022. https://www.scibasejournals.org/neurology/1022.pdf (Full text)

Expanded autonomic testing helps to pinpoint cases of orthostatic intolerance

News:

Using expanded, state-of-the-art capabilities in autonomic testing, Peter Novak, MD, PhD, Chief of the Division of Autonomic Neurology in the Department of Neurology, is driving better understanding of hard-to-diagnose patients with orthostatic intolerance.

The debilitating condition is among the most common neurological conditions affecting women in the United States ages 35 or younger. While knowledge of orthostatic intolerance has become more nuanced in recent years, diagnosing some patients’ symptoms when changing from lying to standing (dizziness, weakness and shortness of breath, with or without rapid heartbeat) has remained elusive.

The identification of postural orthostatic tachycardia syndrome (POTS) in the early 1990s led to clearer diagnosis of many patients. But the syndrome, by definition, excludes those who do not experience tachycardia. To address their symptoms, these patients sometimes are prescribed antianxiety or antidepressant medications.

To better understand these patients, Dr. Novak turned to continuous monitoring of end tidal CO2 and CBFv (cerebral blood flow velocity). As the technologies became available for clinical use, Novak added them to routine testing. The results led him to identify two new syndromes relating to orthostatic dizziness.

“We can now diagnose people who were previously thought to have psychiatric illness or had no diagnosis at all,” says Dr. Novak, of the Department of Neurology, one of only a few departments in the United States that has a Division of Autonomic Neurology.

In addition to continuous monitoring of heart rate and blood pressure that is standard for Valsalva maneuver and tilt-table tests, Dr. Novak’s Autonomic Testing Lab, located at Brigham and Women’s Faulkner Hospital, also measures and interprets end tidal CO2 and CBFv during these tests. Through testing, he has characterized two new syndromes:

  • Hypocapnic cerebral hypoperfusion (HYCH) is a novel syndrome of low CBFv that Novak described in late 2018 in PLoS ONE, as a biomarker of orthostatic intolerance. HYCH can be detected during a tilt test, in patients without orthostatic tachycardia, hypotension, arrhythmia, vascular abnormalities or other causes of abnormal orthostatic CBFv. “This is POTS without the T,” explains Dr. Novak. “These people have normal BP and normal heart rate. But they have the same low blood flow as in POTS due to vasoconstrictive effect of hypocapnia (low end tidal CO2). This is the main reason to monitor blood flow. Otherwise you can miss what is going on with this the patient, and the patient could be misdiagnosed as having a psychiatric illness.” The Autonomic Testing Lab currently sees at last two patients each month who meet the criteria of HYCH. Treatment is similar to that of patients with POTS (combination of exercise, diet and medication for more severe cases), since HYCH and POTS are probably on a spectrum of the same disorder.
  • Orthostatic Cerebral Hypoperfusion Syndrome (OCHOS) is a syndrome of orthostatic intolerance associated with low CBFv that Dr. Novak first described in 2016. In this syndrome, the orthostatic cerebral blood flow is reduced while all other variables are normal. OCHOS can be disabling. Many patients respond to volume expansion or cerebral vasodilators, but the optimal therapy has yet to be found.

Both OCHOS and HYCH are described among the 100 case studies in Dr. Novak’s recently published book Autonomic Testing, (Oxford University Press, April 2019), intended as a practical manual for performing and interpreting autonomic testing. Each case study includes the testing evaluation, results (with visual images to guide test interpretations) and recommendations for treatment and follow-up. Nearly all cases show results of the newer techniques of continuous CBFv and CO2 monitoring concurrent with traditional heart rate and blood pressure testing. “Together, they are more valuable than separately,” Dr. Novak explains.

The combination of classic autonomic tests (Valsalva maneuver, deep breathing and tilt test) enhanced by using of continuous CBFv and CO2 monitoring together make up “the Brigham Protocol.” In addition, the protocol includes non-invasive skin biopsies, now routinely performed in the lab to assess direct small fiber damage, which may indicate inflammation that is treatable. “We call it autonomic testing, but it is more than that at our institution,” says Dr. Novak.

Since 2015, the Autonomic Testing Lab has performed autonomic testing on approximately 1,300 people, about half of them for orthostatic symptoms, says Dr. Novak.

For questions about autonomic testing or if you have a patient who would benefit from autonomic testing, learn more here.

The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS

Abstract:

Aim: It is unclear if individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with family histories of ME/CFS differ from those with ME/CFS without this family history. To explore this issue, quantitative data from patients with ME/CFS and controls were collected, and we examined those with and without family histories of ME/CFS.

Methods: The samples included 400 patients with ME/CFS, and a non-ME/CFS chronic illness control group of 241 patients with multiple sclerosis (MS) and 173 with post-polio syndrome (PPS).

Results: Confirming findings from prior studies, those with ME/CFS were more likely to have family members with ME/CFS than controls. We found family histories of ME/CFS were significantly higher (18%) among the ME/CFS group than the non-ME/CFS controls (3.9%). In addition, patients with ME/CFS who had family histories of ME/CFS were more likely to have gastrointestinal symptoms than those with ME/CFS without those family histories.

Conclusions: Given the recent reports of gastrointestinal difficulties among those with ME/CFS, our findings might represent one predisposing factor for the emergence of ME/CFS.

Source: Jason LA, Ngonmedje S. The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS. Explor Med. 2024;5(2):185-192. doi: 10.37349/emed.2024.00215. Epub 2024 Apr 11. PMID: 39502189; PMCID: PMC11537498. https://pmc.ncbi.nlm.nih.gov/articles/PMC11537498/ (Full text)

Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome

Abstract:

Background: The Stroop task was used to investigate differences in cognitive function between Long COVID (LC), Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and healthy control subjects.

Methods: Subjects viewed four color words or neutral (XXXX) stimuli with the same (congruent) or different color ink (incongruent). Cognitive conflict was inferred from response times for pairings of prestimuli and subsequent stimuli. Overall effects were assessed by univariate analysis with time courses determined for binned response times.

Results: LC and ME/CFS had significantly longer response times than controls indicating cognitive dysfunction. Initial response times were ranked LC > ME > HC, and decreased according to power functions. At the end of the task (900s), times were ranked LC = ME > HC. Response times were significantly slower for stimuli following an incongruent prestimulus. Time series for Stroop effect, facilitation, interference, surprise index and practice power law parameters were generally similar in LC, ME/CFS and HC suggesting comparable patterns for recruitment of cognitive resources. The prestimulus data were analyzed and generated positive Stroop and interference effects that were distinct from stimulus effects.

Conclusion: LC and ME/CFS have global slowing of response times that cannot be overcome by practice suggesting impaired communications between network nodes during problem solving. Analysis of matched prestimulus – stimulus effects adds a new dimension for understanding cognitive conflict.

Brief summary: Cognitive dysfunction in Long COVID and ME/CFS was demonstrated using the Stroop task which found global slowing of response times and limitations of practice effects.

Source: Baraniuk JN, Thapaliya K, Inderyas M, Shan ZY, Barnden LR. Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome. Sci Rep. 2024 Nov 5;14(1):26796. doi: 10.1038/s41598-024-75651-3. PMID: 39500939; PMCID: PMC11538523. https://pmc.ncbi.nlm.nih.gov/articles/PMC11538523/ (Full text)

Web-based telemedicine approach for treatment of post-COVID-19 in Thuringia (WATCH)

Abstract:

Objective: After infection with SARS-CoV-2, a substantial proportion of patients develop long-lasting sequelae. These sequelae include fatigue (potentially as severe as that seen in ME/CFS cases), cognitive dysfunction, and psychiatric symptoms. Because the pathophysiology of these sequelae remains unclear, existing therapeutic concepts address the symptoms through pacing strategies, cognitive training, and psychological therapy.

Methods: Here, we present a protocol for a digital multimodal structured intervention addressing common symptoms through three intervention modules: BRAIN, BODY, and SOUL. This intervention includes an assessment conducted via a mobile “post-COVID-19 bus” near the patient’s home, as well as the use of wearable devices and mobile applications to support pacing strategies and collection of data, including ecological momentary assessment.

Results: We will focus on physical component subscore of the SF36 as Quality of Life parameter as the primary outcome parameter for WATCH to take into account the holistic approach that is necessary for care of post-COVID patients.

Conclusion: In the current project, we present a protocol for a holistic and multimodal structured therapeutic concept which is easily accessible, and scalable for post-COVID patients.

Source: Reuken PA, Besteher B, Bleidorn J, Brockmann D, Finke K, Freytag A, Lehmann-Pohl K, Lemhöfer C, Mikolajczyk R, Puta C, Scherag A, Wiedermann M, Zippel-Schultz B, Stallmach A. Web-based telemedicine approach for treatment of post-COVID-19 in Thuringia (WATCH). Digit Health. 2024 Oct 14;10:20552076241291748. doi: 10.1177/20552076241291748. PMID: 39493638; PMCID: PMC11528766. https://pmc.ncbi.nlm.nih.gov/articles/PMC11528766/ (Full text)

Two-Day Cardiopulmonary Exercise Testing in Long COVID Post-Exertional Malaise Diagnosis

Abstract:

Background: Long COVID patients present with a myriad of symptoms that can include fatigue, exercise intolerance and post exertional malaise (PEM). Long COVID has been compared to other post viral syndromes, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), where a reduction in day 2 cardiopulmonary exercise test (CPET) performance of a two-day CPET protocol is suggested to be a result of PEM. We investigated cardiopulmonary and perceptual responses to a two-day CPET protocol in Long COVID patients.

Methods: 15 Long COVID patients [n=7 females; mean (SD) age: 53(11) yr; BMI = 32.2(8.5) kg/m2] performed a pulmonary function test and two ramp-incremental CPETs separated by 24hr. CPET variables included gas exchange threshold (GET), V̇O2peak and WRpeak. Ratings of perceived dyspnoea and leg effort were recorded at peak exercise using the modified 0-10 Borg Scale. PEM (past six months) was assessed using the modified DePaul Symptom Questionnaire (mDSQ). One-sample t-tests were used to test significance of mean difference between days (p<0.05).

Results: mDSQ revealed PEM in 80% of patients. Lung function was normal. Responses to day 1 CPET were consistent with the presence of aerobic deconditioning in 40% of patients (V̇O2peak <80% predicted, in the absence of evidence of cardiovascular and pulmonary limitations). There were no differences between day-1 and day-2 CPET responses (all p>0.05).

Conclusion: Post exertional malaise symptoms in Long COVID patients, in the absence of differences in two-day CPET responses separated by 24hours, suggests that post-exertional malaise is not due to impaired recovery of exercise capacity between days.

Source: Gattoni C, Abbasi A, Ferguson C, Lanks CW, Decato TW, Rossiter HB, Casaburi R, Stringer WW. Two-Day Cardiopulmonary Exercise Testing in Long COVID Post-Exertional Malaise Diagnosis. Respir Physiol Neurobiol. 2024 Oct 25:104362. doi: 10.1016/j.resp.2024.104362. Epub ahead of print. PMID: 39490617. https://www.sciencedirect.com/science/article/pii/S1569904824001551 (Full text)

Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Reduced natural killer (NK) cell cytotoxicity is the most consistent immune finding in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Meta-analysis of the published literature determined the effect size of the decrement in ME/CFS. Databases were screened for papers comparing NK cell cytotoxicity in ME/CFS and healthy controls. A total of 28 papers and 55 effector:target cell ratio (E:T) data points were collected.

Cytotoxicity in ME/CFS was significantly reduced to about half of healthy control levels, with an overall Hedges’ g of 0.96 (0.75-1.18). Heterogeneity was high but was explained by the range of E:T ratios, different methods, and potential outliers. The outcomes confirm reproducible NK cell dysfunction in ME/CFS and will guide studies using the NK cell model system for pathomechanistic investigations.

Source: Baraniuk JN, Eaton-Fitch N, Marshall-Gradisnik S. Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol. 2024 Oct 17;15:1440643. doi: 10.3389/fimmu.2024.1440643. PMID: 39483457; PMCID: PMC11524851. https://pmc.ncbi.nlm.nih.gov/articles/PMC11524851/ (Full text)

Replicating human characteristics: A promising animal model of central fatigue

Highlights:

  • A new method: Modified Multiple Platform Method combined with alternate-day fasting.
  • Modeling method has successfully constructed animal model of central fatigue.
  • Our rat model mimics human emotional, cognitive, and physical fatigue.
  • Hippocampus and muscle tissues show damage and mitochondrial changes.
  • Mitochondrial dysfunction and oxidative stress in hippocampus and muscle tissues.

Abstract:

Central fatigue is a common pathological state characterized by psychological loss of drive, lack of appetite, drowsiness, and decreased psychic alertness. The mechanism underlying central fatigue is still unclear, and there is no widely accepted successful animal model that fully represents human characteristics. We aimed to construct a more clinically relevant and comprehensive animal model of central fatigue.

In this study, we utilized the Modified Multiple Platform Method (MMPM) combined with alternate-day fasting (ADF) to create the animal model. The model group rats are placed on a stationary water environment platform for sleep deprivation at a fixed time each day, and they were subjected to ADF treatment. On non-fasting days, the rats were allowed unrestricted access to food. This process was sustained over a period of 21 days.

We evaluated the model using behavioral assessments such as open field test, elevated plus maze testtail suspension testMorris water maze testgrip strength test, and forced swimming test, as well as serum biochemical laboratory indices. Additionally, we conducted pathological observations of the hippocampus and quadriceps muscle tissues, transmission electron microscope observation of mitochondrial ultrastructure, and assessment of mitochondrial energy metabolism and oxidative stress-related markers.

The results revealed that the model rats displayed emotional anomalies resembling symptoms of depression and anxiety, decreased exploratory behavior, decline in learning and memory function, and signs of skeletal muscle fatigue, successfully replicating human features of negative emotions, cognitive decline, and physical fatigue. Pathological damage and mitochondrial ultrastructural alterations were observed in the hippocampus and quadriceps muscle tissues, accompanied by abnormal mitochondrial energy metabolism and oxidative stress in the form of decreased ATP and increased ROS levels.

In conclusion, our ADF+MMPM model comprehensively replicated the features of human central fatigue and is a promising platform for preclinical research. Furthermore, the pivotal role of mitochondrial energy metabolism and oxidative stress damage in the occurrence of central fatigue in the hippocampus and skeletal muscle tissues was corroborated.

Source: Zhang Y, Zhang Z, Yu Q, Lan B, Shi Q, Li R, Jiao Z, Zhang W, Li F. Replicating human characteristics: A promising animal model of central fatigue. Brain Res Bull. 2024 Jun 15;212:110951. doi: 10.1016/j.brainresbull.2024.110951. Epub 2024 Apr 19. PMID: 38642899. https://www.sciencedirect.com/science/article/pii/S0361923024000844 (Full text)

Maximal oxidative capacity during exercise is associated with muscle power output in patients with long coronavirus disease 2019 (COVID-19) syndrome. A moderation analysis

Abstract:

Background & aims: Long COVID syndrome (LCS) involves persistent symptoms experienced by many patients after recovering from coronavirus disease 2019 (COVID-19). We aimed to assess skeletal muscle energy metabolism, which is closely related to substrate oxidation rates during exercise, in patients with LCS compared with healthy controls. We also examined whether muscle power output mediates the relationship between COVID-19 and skeletal muscle energy metabolism.

Methods: In this cross-sectional study, we enrolled 71 patients with LCS and 63 healthy controls. We assessed clinical characteristics such as body composition, physical activity, and muscle strength. We used cardiopulmonary exercise testing to evaluate substrate oxidation rates during graded exercise. We performed statistical analyses to compare group characteristics and peak fat oxidation differences based on power output.

Results: The two-way analysis of covariance (ANCOVA) results, adjusted for covariates, showed that the patients with LCS had lower absolute maximal fatty acid oxidation (MFO), relative MFO/fat free mass (FFM), absolute carbohydrates oxidation (CHox), relative CHox/FFM, and oxygen uptake (V˙˙O2) at maximum fat oxidation (g min-1) than the healthy controls (P < 0.05). Moderation analysis indicated that muscle power output significantly influenced the relationship between LCS and reduced peak fat oxidation (interaction β = -0.105 [95% confidence interval -0.174; -0.036]; P = 0.026). Therefore, when muscle power output was below 388 W, the effect of the LCS on MFO was significant (62% in our study sample P = 0.010). These findings suggest compromised mitochondrial bioenergetics and muscle function, represented by lower peak fat oxidation rates, in the patients with LCS compared with the healthy controls.

Conclusion: The patients with LCS had lower peak fat oxidation during exercise compared with the healthy controls, potentially indicating impairment in skeletal muscle function. The relationship between peak fat oxidation and LCS appears to be mediated predominantly by muscle power output. Additional research should continue investigating LCS pathogenesis and the functional role of mitochondria.

Source: Ramírez-Vélez R, Oscoz-Ochandorena S, García-Alonso Y, García-Alonso N, Legarra-Gorgoñon G, Oteiza J, Lorea AE, Izquierdo M, Correa-Rodríguez M. Maximal oxidative capacity during exercise is associated with muscle power output in patients with long coronavirus disease 2019 (COVID-19) syndrome. A moderation analysis. Clin Nutr ESPEN. 2023 Dec;58:253-262. doi: 10.1016/j.clnesp.2023.10.009. Epub 2023 Oct 14. PMID: 38057014. https://clinicalnutritionespen.com/article/S2405-4577(23)02166-6/fulltext (Full text)

Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression

Abstract:

Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections.

Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes.

While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function.

We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue.

Source: Homma ST, Wang X, Frere JJ, Gower AC, Zhou J, Lim JK, tenOever BR, Zhou L. Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression. Biomedicines. 2024 Jun 28;12(7):1443. doi: 10.3390/biomedicines12071443. PMID: 39062017; PMCID: PMC11275164. https://pmc.ncbi.nlm.nih.gov/articles/PMC11275164/ (Full text)