SARS-CoV-2 Mitochondrial Metabolic and Epigenomic Reprogramming in COVID-19

Abstract:

To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production.

The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression.

These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.

Source: Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 Mitochondrial Metabolic and Epigenomic Reprogramming in COVID-19. Pharmacol Res. 2024 Apr 11:107170. doi: 10.1016/j.phrs.2024.107170. Epub ahead of print. PMID: 38614374. https://www.sciencedirect.com/science/article/pii/S1043661824001142 (Full text)

Proteomic profiling demonstrates inflammatory and endotheliopathy signatures associated with impaired cardiopulmonary exercise hemodynamic profile in Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome

Abstract:

Approximately 50% of patients who recover from the acute SARS-CoV-2 experience Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. The pathophysiological hallmark of PASC is characterized by impaired system oxygen extraction (EO2) on invasive cardiopulmonary exercise test (iCPET). However, the mechanistic insights into impaired EO2 remain unclear.

We studied 21 consecutive iCPET in PASC patients with unexplained exertional intolerance. PASC patients were dichotomized into mildly reduced (EO2peak-mild) and severely reduced (EO2peak-severe) EO2 groups according to the median peak EO2 value. Proteomic profiling was performed on mixed venous blood plasma obtained at peak exercise during iCPET.

PASC patients as a group exhibited depressed peak exercise aerobic capacity (peak VO2; 85 ± 18 vs. 131 ± 45% predicted; p = 0.0002) with normal systemic oxygen delivery, DO2 (37 ± 9 vs. 42 ± 15 mL/kg/min; p = 0.43) and reduced EO2 (0.4 ± 0.1 vs. 0.8 ± 0.1; p < 0.0001). PASC patients with EO2peak-mild exhibited greater DO2 compared to those with EO2peak-severe [42.9 (34.2-41.2) vs. 32.1 (26.8-38.0) mL/kg/min; p = 0.01]. The proteins with increased expression in the EO2peak-severe group were involved in inflammatory and fibrotic processes. In the EO2peak-mild group, proteins associated with oxidative phosphorylation and glycogen metabolism were elevated.

In PASC patients with impaired EO2, there exist a spectrum of PASC phenotype related to differential aberrant protein expression and cardio-pulmonary physiologic response. PASC patients with EO2peak-severe exhibit a maladaptive physiologic and proteomic signature consistent with persistent inflammatory state and endothelial dysfunction, while in the EO2peak-mild group, there is enhanced expression of proteins involved in oxidative phosphorylation-mediated ATP synthesis along with an enhanced cardiopulmonary physiological response.

Source: Singh I, Leitner BP, Wang Y, Zhang H, Joseph P, Lutchmansingh DD, Gulati M, Possick JD, Damsky W, Hwa J, Heerdt PM, Chun HJ. Proteomic profiling demonstrates inflammatory and endotheliopathy signatures associated with impaired cardiopulmonary exercise hemodynamic profile in Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. Pulm Circ. 2023 Apr 1;13(2):e12220. doi: 10.1002/pul2.12220. PMID: 37091121; PMCID: PMC10113513. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113513/ (Full text)

Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

The objectives of this study are to test the hypothesis that the fatigue and accompanying symptoms of Chronic Myalgic Encephalomyelitis/Fatigue Syndrome are in part due to defects in energy provision at the cellular level, and to understand the pathophysiology of the defects so that effective medical intervention can be implemented.

We performed an audit of 138 patients (ages 18-65) diagnosed with ME/CFS and attending a private practice. The patients and 53 normal, healthy controls had the ATP Profile test carried out on neutrophils from a 3-ml venous blood sample. This test yields 6 numerical factors that describe the availability of ATP and the efficiency of oxidative phosphorylation in mitochondria. Other biomedical measurements, including the concentration of cell-free DNA in plasma, were made. The results of the audit are compared with the controls and a previous cohort of 61 patients. We find that all patients tested have measureable mitochondrial dysfunction which correlates with the severity of the illness.

The patients divide into two main groups differentiated by how cellular metabolism attempts to compensate for the dysfunction. Comparisons with exercise studies suggest that the dysfunction in neutrophils also occurs in other cells. This is confirmed by the cell-free DNA measurements which indicate levels of tissue damage up to 3.5 times the normal reference range. The major immediate causes of the dysfunction are lack of essential substrates and partial blocking of the translocator protein sites in mitochondria. The ATP Profile is a valuable diagnostic tool for the clinical management of ME/CFS.

 

Source: Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208-20. Epub 2012 Jun 15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403556/ (Full article)