Orthostatic Intolerance and Chronotropic Incompetence in Patients With Myalgic Encephalomyelitis or Chronic Fatigue Syndrome

Abstract:

Background: Orthostatic intolerance markedly affects the day-to-day activities of patients with myalgic encephalomyelitis (ME) or chronic fatigue syndrome. Chronotropic incompetence (CI), defined as an impaired chronotropic response or reduced increases in heart rate during exercise and resulting in lower exercise capacity, may also be observed during orthostasis in patients with ME.

Methods and Results: In this study, the recordings of 101 adult patients with ME (36 men, 65 women; mean [±SD] age 37±12 years) who underwent conventional active 10-min standing tests at least 3 times to determine the presence of CI were analyzed. Recordings were selected for 13 patients who experienced tests both with and without exhibiting postural orthostatic tachycardia syndrome (POTS; an increase in heart rate of ≥30 beats/min or an actual heart rate of ≥120 beats/min) while also both successfully completing and failing to complete 10-min standing on different occasions. Subjects in whom failure without POTS was observed in any test(s) while success was associated with POTS on other occasions were considered positive for CI during orthostasis. Of the 13 patients, 12 (92%) were CI positive, 5 (38%) of whom exclusively failed the tests without experiencing POTS.

Conclusions: Some patients with ME were CI positive during standing tests, suggesting impaired sympathetic activation. The presence of POTS appears to be essential for maintaining orthostasis in these patients.

Source: Kunihisa Miwa. Orthostatic Intolerance and Chronotropic Incompetence in Patients With Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Circulation Reports, Article ID CR-22-0114. https://www.jstage.jst.go.jp/article/circrep/advpub/0/advpub_CR-22-0114/_html/-char/en (Full text)

Inflammation during early post-acute COVID-19 is associated with reduced exercise capacity and Long COVID symptoms after 1 year

Abstract:

Background: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 “PASC” or “Long COVID”) remain unclear. The purpose of this study was to elucidate the pathophysiology of cardiopulmonary PASC using multimodality cardiovascular imaging including cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring.

Methods: We performed CMR, CPET, and ambulatory rhythm monitoring among adults > 1 year after PCR-confirmed SARS-CoV-2 infection in the UCSF Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; NCT04362150 ) and correlated findings with previously measured biomarkers. We used logistic regression to estimate associations with PASC symptoms (dyspnea, chest pain, palpitations, and fatigue) adjusted for confounders and linear regression to estimate differences between those with and without symptoms adjusted for confounders.

Results: Out of 120 participants in the cohort, 46 participants (unselected for symptom status) had at least one advanced cardiac test performed at median 17 months following initial SARS-CoV-2 infection. Median age was 52 (IQR 42-61), 18 (39%) were female, and 6 (13%) were hospitalized for severe acute infection. On CMR (n=39), higher extracellular volume was associated with symptoms, but no evidence of late-gadolinium enhancement or differences in T1 or T2 mapping were demonstrated. We did not find arrhythmias on ambulatory monitoring. In contrast, on CPET (n=39), 13/23 (57%) with cardiopulmonary symptoms or fatigue had reduced exercise capacity (peak VO 2 <85% predicted) compared to 2/16 (13%) without symptoms (p=0.008). The adjusted difference in peak VO 2 was 5.9 ml/kg/min lower (-9.6 to -2.3; p=0.002) or -21% predicted (-35 to -7; p=0.006) among those with symptoms. Chronotropic incompetence was the primary abnormality among 9/15 (60%) with reduced peak VO 2 . Adjusted heart rate reserve <80% was associated with reduced exercise capacity (OR 15.6, 95%CI 1.30-187; p=0.03). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later.

Conclusions: Cardiopulmonary symptoms and elevated inflammatory markers present early in PASC are associated with objectively reduced exercise capacity measured on cardiopulmonary exercise testing more than 1 year following COVID-19. Chronotropic incompetence may explain reduced exercise capacity among some individuals with PASC.

Clinical perspective: What is New? Elevated inflammatory markers in early post-acute COVID-19 are associated with reduced exercise capacity more than 1 year later. Impaired chronotropic response to exercise is associated with reduced exercise capacity and cardiopulmonary symptoms more than 1 year after SARS-CoV-2 infection. Findings on ambulatory rhythm monitoring point to perturbed autonomic function, while cardiac MRI findings argue against myocardial dysfunction and myocarditis.

Clinical implications: Cardiopulmonary testing to identify etiologies of persistent symptoms in post-acute sequalae of COVID-19 or “Long COVID” should be performed in a manner that allows for assessment of heart rate response to exercise. Therapeutic trials of anti-inflammatory and exercise strategies in PASC are urgently needed and should include assessment of symptoms and objective testing with cardiopulmonary exercise testing.

Source: Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Sun K, Ma Y, Zepeda V, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Win S, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Inflammation during early post-acute COVID-19 is associated with reduced exercise capacity and Long COVID symptoms after 1 year. medRxiv [Preprint]. 2022 Jun 1:2022.05.17.22275235. doi: 10.1101/2022.05.17.22275235. PMID: 35677073; PMCID: PMC9176659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176659/ (Full text)

Sleep characteristics, exercise capacity and physical activity in patients with chronic fatigue syndrome

Abstract:

PURPOSE: Unrefreshing sleep and lowered physical activity are commonly observed in chronic fatigue syndrome (CFS) patients, but how they might influence each other remains unexplored. Therefore, this study simultaneously examined the exercise capacity, sleep characteristics and physical activity in CFS patients.

METHODS: Handgrip strength and cycle exercise capacity were assessed in 42 female CFS patients and 24 inactive control subjects. During four consecutive days and nights, energy expenditure, activity and sleep-wake pattern were objectively registered using a Sensewear Armband.

RESULTS: Exercise capacity was significantly lower in CFS patients. In both groups VO2peak correlated with the time subjects were physically active. In CFS patients only, VO2peak correlated negatively with sleeping during the day whilst physical activity level and energy expenditure correlated negatively with sleep latency and lying awake at night.

CONCLUSIONS: In the present study, CFS patients with higher VO2peak tend to sleep less over day. Occupation in physical activities was negatively associated with sleep latency and lying awake at night. Increased physical activity potentially has beneficial effects on sleep quality in CFS. However, a close monitoring of the effects of increasing physical activity is essential to avoid negative effects on the health status of patients.

IMPLICATIONS FOR REHABILITATION: Female patients with chronic fatigue syndrome (CFS) have normal sleep latency and sleep efficiency, but sleep more and spent more time in bed as compared to healthy inactive women. Female CFS patients have lower exercise capacity, and a lower physical activity level as compared to healthy inactive women. CFS patients appear to be more sensitive for sleep quality (sleep latency and lying awake at night), which is associated with a low physical activity level.

 

Source: Aerenhouts D, Ickmans K, Clarys P, Zinzen E, Meersdom G, Lambrecht L, Nijs J. Sleep characteristics, exercise capacity and physical activity in patients with chronic fatigue syndrome. Disabil Rehabil. 2015;37(22):2044-50. doi: 10.3109/09638288.2014.993093. Epub 2014 Dec 16. https://www.ncbi.nlm.nih.gov/pubmed/25512240

 

Tired of being inactive: a systematic literature review of physical activity, physiological exercise capacity and muscle strength in patients with chronic fatigue syndrome

Abstract:

A systematic review was undertaken to examine whether patients with chronic fatigue syndrome (CFS) differ from healthy sedentary controls in physiological exercise capacity, physical activity level and muscle strength. From the available literature, it can be concluded that patients with CFS perform less physical activity during daily life, and have less peak isometric muscle strength compared to healthy sedentary control subjects. Conflicting data in relation to physiological exercise capacity of patients with CFS have been reported, but the weighted available evidence points towards a reduced physiological exercise capacity in CFS. Future studies should use a wash-out period for medication use, blinded assessments, a priori power calculation and a sedentary control group comparable for age, gender, body weight, body length and current physical activity level.

 

Source: Nijs J, Aelbrecht S, Meeus M, Van Oosterwijck J, Zinzen E, Clarys P. Tired of being inactive: a systematic literature review of physical activity, physiological exercise capacity and muscle strength in patients with chronic fatigue syndrome. Disabil Rehabil. 2011;33(17-18):1493-500. doi: 10.3109/09638288.2010.541543. Epub 2010 Dec 20. https://www.ncbi.nlm.nih.gov/pubmed/21166613

 

Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy

Abstract:

BACKGROUND: Previous study of patients with chronic fatigue syndrome (CFS) has demonstrated a markedly reduced dynamic exercise capacity, not limited by cardiac performance and in the absence of clinical neuromuscular dysfunction, suggesting the possibility of a subclinical defect of skeletal muscle.

METHODS: The in vivo metabolism of the gastrocnemius muscles of 22 CFS patients and 21 normal control subjects was compared during rest, graded dynamic exercise to exhaustion and recovery, using 31P nuclear magnetic resonance (NMR) spectroscopy to reflect minute-to-minute intracellular high-energy phosphate metabolism.

RESULTS: Duration of exercise was markedly shorter in the CFS patients (8.1 +/- 2.8 min) compared with the normal subjects (11.3 +/- 4.3 min) (p = 0.005). There were large changes in phosphocreatine (PCr), inorganic phosphate (Pi), and pH from rest to clinical fatigue in all subjects, reflecting the high intensity of the exercise. The temporal metabolic patterns were qualitatively similar in the CFS patients and normal subjects. There were early and continuous changes in PCr and Pi that peaked at the point of fatigue and rapidly reversed after exercise. In contrast, pH was relatively static in early exercise, not declining noticeably until 50 percent of total exercise duration was achieved, and reaching a nadir at 2 min postexercise, before rapidly reversing. There were no differences in pH at rest (7.08 +/- 0.04 vs 7.10 +/- 0.04), exhaustion (6.85 +/- 0.17 vs 6.76 +/- 0.17) or early (6.64 +/- 0.25 vs 6.56 +/- 0.24) or late recovery (7.09 +/- 0.04 vs 7.10 +/- 0.05), CFS patients vs normal subjects, respectively (NS). Neither were there intergroup differences (NS) in PCr or Pi. Although, quantitatively, the changes in PCr, Pi, and pH were marked and similar in both groups from rest to exhaustion, the changes all occurred much more rapidly in the CFS patients. Moreover, adenosine triphosphate (ATP) was significantly (p = 0.007) less at exhaustion in the CFS group.

CONCLUSIONS: Patients with CFS and normal control subjects have similar skeletal muscle metabolic patterns during dynamic exercise and reach similar clinical and metabolic end points. However, CFS patients reach exhaustion much more rapidly than normal subjects, at which point they also have relatively reduced intracellular concentrations of ATP. These data suggest a defect of oxidative metabolism with a resultant acceleration of glycolysis in the working skeletal muscles of CFS patients. This metabolic defect may contribute to the reduced physical endurance of CFS patients. Its etiology is unknown. Whether CFS patients’ overwhelming tiredness at rest has a similar metabolic pathophysiology or etiology also remains unknown.

 

Source: Wong R1, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T. Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest. 1992 Dec;102(6):1716-22. http://www.ncbi.nlm.nih.gov/pubmed/1446478