Abstract:
Category: Biomarker
Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients
Highlights
- Multi-‘omics identified phenotypic, gut microbial, and metabolic biomarkers for ME/CFS.
- Reduced gut microbial diversity and increased plasma sphingomyelins in ME/CFS.
- Short-term patients had more severe gut microbial dysbiosis with decreased butyrate.
- Long-term patients had more significant metabolic and clinical aberrations
Summary
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive.
Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79).
First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations.
Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate.
In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.
Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne D. Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host & Microbe 31, 273–287. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5 (Full text)
Studies find that microbiome changes may be a signature for ME/CFS
Researchers have found differences in the gut microbiomes of people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) compared to healthy controls. Findings from two studies, published in Cell Host & Microbe and funded by the National Institutes of Health add to growing evidence that connects disruptions in the gut microbiome, the complete collection of bacteria, viruses, and fungi that live in our gastrointestinal system, to ME/CFS.
“The microbiome has emerged as a potential contributor to ME/CFS. These findings provide unique insights into the role the microbiome plays in the disease and suggest that certain differences in gut microbes could serve as biomarkers for ME/CFS,” said Vicky Whittemore, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS).
ME/CFS is a serious, chronic, and debilitating disease characterized by a range of symptoms, including fatigue, post-exertional malaise, sleep disturbance, cognitive difficulties, pain, and gastrointestinal issues. The causes of the disease are unknown and there are no treatments.
In one study, senior author Brent L. Williams, Ph.D., assistant professor, W. Ian Lipkin, M.D., John Snow Professor of Epidemiology and director of the Center for Infection and Immunity at the Columbia University Mailman School of Public Health, in New York City, and their collaborators analyzed the genetic makeup of gut bacteria in fecal samples collected from a geographically diverse cohort of 106 people with ME/CFS and 91 healthy controls. The results revealed key differences in microbiome diversity, quantity, metabolic pathways, and interactions between species of gut bacteria.
Dr. Williams and his colleagues found that people with ME/CFS had abnormally low levels of several bacterial species compared to healthy controls, including Faecalibacterium prausnitzii (F. prausnitzii) and Eubacterium rectale. These health-promoting bacteria produce a short chain fatty acid called butyrate, a bacterial metabolite, or by-product, that plays an important role in maintaining gut health. An acetate-producing bacterium was also reduced in samples obtained from people with ME/CFS.
More detailed metabolomic analyses confirmed that a reduction in these bacteria was associated with reduced butyrate production in ME/CFS. Butyrate is the primary energy source for cells that line the gut, providing up to 70% of their energy requirements, support for the gut immune system, and protection against diseases of the digestive tract. Butyrate, tryptophan, and other metabolites detected in the blood are important for regulating immune, metabolic, and endocrine functions.
While species of butyrate-producing bacteria decreased, there were increased levels of nine other species in ME/CFS, including Enterocloster bolteae and Ruminococcus gnavus, which are associated with autoimmune diseases and inflammatory bowel disease, respectively.
Dr. Williams’ group also reported that an abundance of F. prausnitzii was inversely associated with fatigue severity in ME/CFS, suggesting a possible link between gut bacteria and disease symptoms. More research is needed to determine if differences in the gut microbiome are a consequence or cause of symptoms.
The findings indicate that imbalances in these 12 species of bacteria could be used as biomarkers for ME/CFS classification, potentially providing consistent, measurable targets to improve diagnosis.
The gut microbiome is an ecosystem with complex interactions between bacteria, where microbes can exchange or compete for nutrients, metabolites, or other molecular signals. Researchers found notable differences in the network of species interactions in people with ME/CFS—including unique interactions between F. prausnitzii and other species. This indicates that there is an extensive rewiring of bacterial networks in ME/CFS.
“In addition to differences in individual species in ME/CFS, focusing a lens on community interaction dynamics may add greater specificity to the broad definition of dysbiosis, distinguishing between other diseases in which the gut microbiome becomes imbalanced,” said Dr. Williams. “This is also important for generating new testable hypotheses about the underlying mechanisms and mediators of dysbiosis in ME/CFS and may eventually inform strategies to correct these imbalances.”
A balanced microbiome is also essential for a variety of neural systems, especially immune regulation and coupling between energy metabolism and blood supply in the brain, as well as the function of the nerves that supply the gut.
In another study at the Jackson Laboratory in Farmington, Connecticut, Julia Oh, Ph.D.(link is external), associate professor, and Derya Unutmaz, M.D., professor, teamed up with other ME/CFS experts to study microbiome abnormalities in different phases of ME/CFS. Dr. Oh’s team collected and analyzed clinical data, fecal samples, and blood samples from 149 people with ME/CFS who had been diagnosed within the previous four years (74 short-term) or who had been diagnosed more than 10 years ago (75 long-term) and 79 healthy controls.
The results showed that the short-term group had less microbial diversity, while the long-term group established a stable, but individualized gut microbiome similar to healthy controls. Dr. Oh and her colleagues found lower levels of several butyrate-producing species, including F. prausnitzii, especially in the short-term participants. There was also a reduction in species associated with tryptophan metabolism in all ME/CFS participants compared to controls.
Dr. Oh’s group also collected detailed clinical and lifestyle data from participants. By combining these data with genetic and metabolome data, the team developed a way to accurately classify and differentiate ME/CFS from healthy controls. Using this approach, they found that individuals with long-term ME/CFS had a more balanced microbiome but showed more severe clinical symptoms and progressive metabolic irregularities compared to the other groups.
Both studies identify potential biomarkers for ME/CFS, which may inform diagnostic tests and disease classification. Understanding the connection between disturbances in the gut microbiome and ME/CFS may also guide the development of new therapeutics.
Additional research is required to learn more about the pathophysiological implications of butyrate and other metabolite deficiencies in ME/CFS. Future studies will determine how gut microbe disturbances contribute to symptoms, including changes during disease progression.
The studies were funded in part by the NIH’s ME/CFS Collaborative Research Network(link is external), a consortium supported by multiple institutes and centers at NIH, consisting of three collaborative research centers and a data management coordinating center. The research network was established in 2017 to help advance research on ME/CFS. The research was supported by NINDS grant U54NS105539, National Institute of Allergy and Infectious Diseases grants U54AI138370 and R56AI120724, and anonymous donors through the Crowdfunding Microbe Discovery Project.
Circulating microRNA expression signatures accurately discriminate myalgic encephalomyelitis from fibromyalgia and comorbid conditions
Abstract:
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and fibromyalgia (FM) are two chronic complex diseases with overlapping symptoms affecting multiple systems and organs over time. Due to the absence of validated biomarkers and similarity in symptoms, both disorders are misdiagnosed, and the comorbidity of the two is often unrecognized.
Our study aimed to investigate the expression profiles of 11 circulating miRNAs previously associated with ME/CFS pathogenesis in FM patients and individuals with a comorbid diagnosis of FM associated with ME/CFS (ME/CFS + FM), and matched sedentary healthy controls. Whether these 11 circulating miRNAs expression can differentiate between the two disorders was also examined.
Our results highlight differential circulating miRNAs expression signatures between ME/CFS, FM and ME/CFS + FM, which also correlate to symptom severity between ME/CFS and ME/CFS + FM groups. We provided a prediction model, by using a machine-learning approach based on 11 circulating miRNAs levels, which can be used to discriminate between patients suffering from ME/CFS, FM and ME/CFS + FM. These 11 miRNAs are proposed as potential biomarkers for discriminating ME/CFS from FM.
The results of this study demonstrate that ME/CFS and FM are two distinct illnesses, and we highlight the comorbidity between the two conditions. Proper diagnosis of patients suffering from ME/CFS, FM or ME/CFS + FM is crucial to elucidate the pathophysiology of both diseases, determine preventive measures, and establish more effective treatments.
Source: Nepotchatykh E, Caraus I, Elremaly W, Leveau C, Elbakry M, Godbout C, Rostami-Afshari B, Petre D, Khatami N, Franco A, Moreau A. Circulating microRNA expression signatures accurately discriminate myalgic encephalomyelitis from fibromyalgia and comorbid conditions. Sci Rep. 2023 Feb 2;13(1):1896. doi: 10.1038/s41598-023-28955-9. PMID: 36732593. https://www.nature.com/articles/s41598-023-28955-9 (Full text)
The Role of Leptin and Inflammatory Related Biomarkers in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Purpose: Leptin is a member of the cytokine family; its receptor (LEPR-b) is the longest form receptor expressed in cells of the immune system; wherein LEPR-b deficiency causes a decrease in CD4+ cells. LEPR-b is located in hypothalamic and brain stem nuclei, and it primarily regulates energy status. As well, leptin indirectly regulates widespread pain and exercise tolerance by decreasing circulating cortisol.
Hyperinsulinemia increases leptin production in adipocytes on a diurnal rhythm; however, the precise relationship between insulin, leptin and pro-inflammatory markers remains uncertain. In clinical settings, high-sensitivity C-reactive protein (hsCRP) has been widely used, as an inflammatory predictor for leptin-related cardiometabolic outcomes and chronic inflammatory symptoms.
Leptin-related metabolic and inflammation dysregulations have been clinically reported in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but not fully elucidated. We examined the association of plasma insulin, leptin, and hsCRP levels with ME/CFS self-reported symptom severity.
Methods: Prospective analyses were conducted on ME/CFS patients who met Fukuda/CDC criteria at Birmingham hospital, Alabama, U.S.A. The independent variables were hyperinsulinemia (>174 μIU/mL), hyperleptinemia/hypoleptinemia (>18.3/<3.3 ng/mL), residual inflammation risk (hsCRP ≥2 and ≠26.2 mg/L) and within-individual-variability (WIV) for each biomarker.
WIV was defined for each individual as standard deviation/sample residuals adjusting for time and calculated from once-daily random plasma samples over 10–12 weeks.
The primary outcomes were:
(1) ME/CFS symptom score trends [generalized pain, persistent fatigue, sleep disturbance, impairment of concentration and memory (brain fog), and post-exertional malaise (PEM)] calculated from the MFI-20 questionnaire with anchors from 0 to 100 and recorded once daily over a matching 12–14 weeks, and
(2) dichotomized symptom severity, with severe symptoms defined as scores > 60/100. After adjusting for age and time, we reported: (1) standard errors (SEM) and p-values for symptom trends using multivariable mixed-effect linear regression models, and (2) odds ratios for severe symptoms using multivariable alternating logistic regression models.
Results: We included 29 ME/CFS patients. All were females and >18 years old. Hyperinsulinemia, hyperleptinemia/hypoleptinemia, and residual inflammation risk were 7%, 80%/7%, and 74%, respectively.
The medians of insulin-WIV, leptin-WIV and hsCRP-WIV were [(0.24; IQR 0.15–0.38), (0.25; IQR 0.15–0.40), (0.33; IQR 0.18–0.51)] respectively. On average, hyperleptinemic patients had the highest leptin-WIV and 50% of them had residual inflammation risk.
Severe (fatigue, pain, brain fog, sleep disturbance, and PEM) were reported in 50%, 29%, 41%, 30%, and 57% of patients, respectively. In the adjusted analysis, worse fatigue scores (7.49; SEM, 2.23; p = 0.002) were associated with higher insulin-WIV.
Hyperleptinemia (OR 1.54; 95% CI 1.13–2.09) compared to hypoleptinemia, and residual inflammation risk (OR 1.65; 95% CI 1.21–2.25) were associated with higher odds of severe fatigue. Worse pain scores (7.17; SEM, 2.30; p = 0.005) were associated with higher leptin-WIV, and (8.45; SEM, 2.25; p = 0.0009) higher hsCRP-WIV, and residual inflammation risk (OR 1.75; 95% CI 1.34–2.29) was associated with higher odds of severe pain.
Severe brain fog scores (9.20; SEM, 2.44; p = 0.0008) were associated with higher insulin-WIV, higher leptin-WIV (4.73; SEM, 2.12; p = 0.03). Residual inflammation risk (OR 1.40; 95% CI 1.16–1.77) was associated with higher odds of severe brain fog.
Hyperleptinemia (OR 0.60; 95% CI 0.43–1.19) was associated with lower odds of severe PEM compared to hypoleptinemia, and better sleep quality was associated (6.07; SEM, 1.70; p = 0.001) with higher insulin-WIV, and (3.37; SEM, 1.47; p = 0.03) higher leptin-WIV.
Conclusions: In patients with ME/CFS, symptoms severity was associated with hyperleptinemia, inflammation and within-individual-variability of these biomarkers. Leptin and hsCRP may be clinically useful in predicting symptom severity.
Larger clinical trials are needed to further examine the prediction and causality of these biomarkers in the development of ME/CFS diagnosis. The efficacy and safety of anti-inflammatory therapies may be evaluated in sub-clusters of ME/CFS with metabolic responses and inflammation dysregulations to improve patient-reported symptoms.
Source: Rahaf Al Assil and Jarred W Younger. “The Role of Leptin and Inflammatory Related Biomarkers in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome” in Karandrea S, Agarwal N, Organizing Committee of Cardiometabolic Health Congress. Report from the Scientific Poster Session at the 16th Annual Cardiometabolic Health Congress in National Harbor, USA, 14–17 October 2021. Proceedings. 2022; 80(1):6. https://doi.org/10.3390/proceedings2022080006 (Full text)
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Human Herpesviruses Are Back!
Abstract:
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion Intolerance Disease (SEID) is a chronic multisystem illness of unconfirmed etiology. There are currently no biomarkers and/or signatures available to assist in the diagnosis of the syndrome and while numerous mechanisms have been hypothesized to explain the pathology of ME/CFS, the triggers and/or drivers remain unknown.
Initial studies suggested a potential role of the human herpesviruses especially Epstein-Barr virus (EBV) in the disease process but inconsistent and conflicting data led to the erroneous suggestion that these viruses had no role in the syndrome. New studies using more advanced approaches have now demonstrated that specific proteins encoded by EBV could contribute to the immune and neurological abnormalities exhibited by a subgroup of patients with ME/CFS. Elucidating the role of these herpesvirus proteins in ME/CFS may lead to the identification of specific biomarkers and the development of novel therapeutics.
Source: Ariza ME. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Human Herpesviruses Are Back! Biomolecules. 2021 Jan 29;11(2):185. doi: 10.3390/biom11020185. PMID: 33572802; PMCID: PMC7912523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912523/ (Full text)
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes
Abstract:
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other. To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF). This was to ascertain if the proteome profile of one was the same or different from the other.
We examined two separate groups of ME/CFS, one with (n=15) and one without (n=15) fibromyalgia. We quantified a total of 2,083 proteins using immunoaffinity depletion, tandem mass tag isobaric labeling and offline two-dimensional liquid chromatography coupled to tandem mass spectrometry, including 1,789 that were quantified in all the CSF samples. ANOVA analysis did not yield any proteins with an adjusted p-value < 0.05. This supports the notion that ME/CFS and fibromyalgia as currently defined are not distinct entities.
Source:
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes.Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome
Abstract:
Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions. The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS. In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease.
Methods: In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home. RNA from the fingerstick blood was tested using DxTerity’s 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method.
Results: Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease. From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to patients with mild to moderate disease conditions. These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases. These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA). Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives).
Conclusions: Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity. These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.
Source: Wang Z, Waldman MF, Basavanhally TJ, Jacobs AR, Lopez G, Perichon RY, Ma JJ, Mackenzie EM, Healy JB, Wang Y, Hersey SA. Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome. J Transl Med. 2022 Oct 25;20(1):486. doi: 10.1186/s12967-022-03682-3. PMID: 36284352; PMCID: PMC9592873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592873/ (Full study)
Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease that is mainly diagnosed based on its clinical symptoms. Biomarkers that could facilitate the diagnosis of ME/CFS are not yet available; therefore, reliable and clinically useful disease indicators are of high importance. The aim of this work was to analyze the association between ME/CFS clinical course severity, presence of HHV-6A/B infection markers, and plasma levels of autoantibodies against adrenergic and muscarinic acetylcholine receptors.
A total of 134 patients with ME/CFS and 33 healthy controls were analyzed for the presence of HHV-6A/B using PCRs, and antibodies against beta2-adrenergic receptors (β2AdR) and muscarinic acetylcholine receptors (M3 AChR and M4 AChR) using ELISAs. HHV-6A/B U3 genomic sequence in whole-blood DNA was detected in 19/31 patients with severe ME/CFS, in 18/73 moderate ME/CFS cases, and in 7/30 mild ME/CFS cases. Severity-related differences were found among those with a virus load of more than 1,000 copies/106 PBMCs.
Although no disease severity-related differences in anti-β2AdR levels were observed in ME/CFS patients, the median concentration of these antibodies in plasma samples of ME/CFS patients was 1.4 ng/ml, while in healthy controls, it was 0.81 ng/ml, with a statistically significant increased level in those with ME/CFS (p = 0.0103). A significant difference of antibodies against M4 AChR median concentration was found between ME/CFS patients (8.15 ng/ml) and healthy controls (6.45 ng/ml) (p = 0.0250). The levels of anti-M4 plotted against disease severity did not show any difference; however, increased viral load correlates with the increase in anti-M4 level.
ME/CFS patients with high HHV-6 load have a more severe course of the disease, thus confirming that the severity of the disease depends on the viral load—the course of the disease is more severe with a higher viral load. An increase in anti-M4 AchR and anti-β2AdR levels is detected in all ME/CFS patient groups in comparison to the control group not depending on ME/CFS clinical course severity. However, the increase in HHV-6 load correlates with the increase in anti-M4 level, and the increase in anti-M4 level, in turn, is associated with the increase in anti-β2AdR level. Elevated levels of antibodies against β2AdR and M4 receptors in ME/CFS patients support their usage as clinical biomarkers in the diagnostic algorithm of ME/CFS.
Source: Gravelsina S, Vilmane A, Svirskis S, Rasa-Dzelzkaleja S, Nora-Krukle Z, Vecvagare K, Krumina A, Leineman I, Shoenfeld Y and Murovska M (2022) Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 13:928945. doi: 10.3389/fimmu.2022.928945 https://www.frontiersin.org/articles/10.3389/fimmu.2022.928945/full (Full text)
Post-COVID-19 syndrome: retinal microcirculation as a potential marker for chronic fatigue
Abstract:
Post-COVID-19 syndrome (PCS) summarizes persisting sequelae after infection with the severe-acute-respiratory-syndrome-Coronavirus-2 (SARS-CoV-2). PCS can affect patients of all covid-19 disease severities. As previous studies revealed impaired blood flow as a provoking factor for triggering PCS, it was the aim of the present study to investigate a potential association of self-reported chronic fatigue and retinal microcirculation in patients with PCS, potentially indicating an objective biomarker.
A prospective study was performed, including 201 subjects: 173 patients with PCS and 28 controls. Retinal microcirculation was visualized by OCT-Angiography (OCT-A) and quantified by the Erlangen-Angio-Tool as macula and peripapillary vessel density (VD). Chronic Fatigue (CF) was assessed with the variables ‘Bell score’, age and gender. The VD in the superficial vascular plexus (SVP), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) were analyzed considering the repetitions (12 times). Taking in account of such repetitions a mixed model was performed to detect possible differences in the least square means between different groups of analysis.
An age effect on VD was observed between patients and controls (p<0.0001). Gender analysis yielded that women with PCS showed lower VD levels in SVP compared to male patients (p=0.0015). The PCS patients showed significantly lower VD of ICP as compared to the controls (p=0.0001, [CI: 0.32; 1]). Moreover, considering PCS patients, the mixed model reveals a significant difference between chronic fatigue (CF) and without CF in VD of SVP (p=0.0033, [CI: -4.5; -0.92]). The model included age, gender and the variable ‘Bell score’, representing a subjective marker for CF. Consequently, the retinal microcirculation might be an objective biomarker in subjective-reported chronic fatigue of patients with PCS.
Source: Sarah Schlick, Marianna Lucio, Alexander Bartsch, Adam Skornia, Jakob Hoffmanns, Charlotte Szewczykowski, Thora Schröder, Franziska Raith, Lennart Rogge, Felix Heltmann, Michael Moritz, Lorenz Beitlich, Julia Schottenhamml, Martin Herrmann, Thomas Harrer, Marion Ganslmayer, Friedrich E. Kruse, Robert Lämmer, Christian Mardin, Bettina Hohberger. Post-COVID-19 syndrome: retinal microcirculation as a potential marker for chronic fatigue. medRxiv 2022.09.23.22280264; doi: https://doi.org/10.1101/2022.09.23.22280264 https://www.medrxiv.org/content/10.1101/2022.09.23.22280264v1.full-text (Full text)