Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified.

The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development.

TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3’s expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.

Source: Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med. 2024 Jul 5;22(1):630. doi: 10.1186/s12967-024-05412-3. PMID: 38970055; PMCID: PMC11227206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227206/ (Full Text)

Persistence of SARS-CoV-2 in Platelets and Megakaryocytes in Long COVID

Abstract:

Background: We have shown that acute COVID-19 pathophysiology is profoundly altered by infection of lung megakaryocytes (MKs) and platelets by SARS‑CoV‑2 (Zhu et al, 2022). A significant proportion of COVID-19 patients have symptoms persisting for > 3 months after initial infection with SARS-CoV-2, referred to as Long COVID or Post-acute Sequelae of SARS-CoV-2 (PASC) patients. Persistent or re-emerging symptoms are varied, with a predominance of asthenia, neuro-cognitive impairment and cardio-vascular symptoms. The pathophysiology underlying long-onset COVID remains poorly understood.

Methods: Blood was collected from patients with Long COVID with symptoms duration > 3 months (LC) (n=30), previously infected by SARS-CoV-2 but without persistent symptoms (resolved COVID-19 (CR), n=10), or healthy donor (n=20). MK frequency in blood was quantified by flow cytometry. Platelets and blood MKs were analysed for microclots, the presence of Spike protein and SARS-CoV-2 RNA by in situ hybridization and immunodetection visualized by confocal microscopy. Spike and serotonin were quantified in plasma.

Results: The frequency of CD41+ MKs in peripheral blood mononucleated cells (PBMCs) was significantly higher than healthy donors (0.28±0.05 versus 0.03±0.02) as a sign of MK infection, as we previously shown in acutely infected individuals with SARS-CoV-2 in platelets. Accordingly, in all samples analyzed, circulating MK in Long COVID sheltered both Spike and SARS-CoV-2 ssRNA, but also dsRNA suggestive of viral replication. These infected MKs produced blood platelets that contain also P Spike and SARS-CoV-2 ssRNA. Platelets microclots were detected in all tested Long COVID patients. Spike protein was detected at the pg level in 30 % of analyzed plasma from Long COVID but not CR individuals. The level of serotonin in platelet and of tryptophan hydroxylase-1 (TPH-1), the enzyme that regulates serotonin synthesis decreased significantly (p<0.0001) in blood of Long COVID patients compared to CR individuals.

Conclusions: In patients developing Long COVID, SARS-CoV-2 persists and replicates in MKs producing virus-containing platelets. The presence of spike in plasma might be an additional sign of viral persistence that could be used as a Long COVID biomarker. The presence of the virus could lead to abnormal platelet activation and the formation of microclots, which would contribute to the various symptoms and to deregulation of serotonin uptake, contributing to the neurocognitive symptoms observed in long-onset COVID.

Source: Feifan He, Boxin Huang, Andrea Cottignies-Calamarte, Wiem Bouchneb, Agathe Goubard, Faroudy Boufassa, Jacques Callebert, Dominique Salmon, Morgane Bomsel. Persistence of SARS-CoV-2 in Platelets and Megakaryocytes in Long COVID. The Conference on Retroviruses and Opportunistic Infections (CROI), March 3-6, 2024 | Denver, Colorado. https://www.croiconference.org/abstract/persistence-of-sars-cov-2-in-platelets-and-megakaryocytes-in-long-covid/ 

Prevalence of persistent SARS-CoV-2 in a large community surveillance study

Abstract:

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown.

Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as ‘persistent infections’ as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all.

Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.

Source: Ghafari M, Hall M, Golubchik T, Ayoubkhani D, House T, MacIntyre-Cockett G, Fryer HR, Thomson L, Nurtay A, Kemp SA, Ferretti L, Buck D, Green A, Trebes A, Piazza P, Lonie LJ, Studley R, Rourke E, Smith DL, Bashton M, Nelson A, Crown M, McCann C, Young GR, Santos RAND, Richards Z, Tariq MA, Cahuantzi R; Wellcome Sanger Institute COVID-19 Surveillance Team; COVID-19 Infection Survey Group; COVID-19 Genomics UK (COG-UK) Consortium; Barrett J, Fraser C, Bonsall D, Walker AS, Lythgoe K. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature. 2024 Feb 21. doi: 10.1038/s41586-024-07029-4. Epub ahead of print. PMID: 38383783. https://www.nature.com/articles/s41586-024-07029-4 (Full text)

From Viral Infection to Autoimmune Reaction: Exploring the Link between Human Herpesvirus 6 and Autoimmune Diseases

Abstract:

The complexity of autoimmunity initiation has been the subject of many studies. Both genetic and environmental factors are essential in autoimmunity development. Among others, environmental factors include infectious agents. HHV-6 is a ubiquitous human pathogen with a high global prevalence. It has several properties suggestive of its contribution to autoimmunity development.
HHV-6 has a broad cell tropism, the ability to establish latency with subsequent reactivation and persistence, and a range of immunomodulation capabilities. Studies have implicated HHV-6 in a plethora of autoimmune diseases—endocrine, neurological, connective tissue, and others—with some studies even proposing possible autoimmunity induction mechanisms. HHV-6 can be frequently found in autoimmunity-affected tissues and lesions; it has been found to infect autoimmune-pathology-relevant cells and influence immune responses and signaling.
This review highlights some of the most well-known autoimmune conditions to which HHV-6 has been linked, like multiple sclerosis and autoimmune thyroiditis, and summarizes the data on HHV-6 involvement in autoimmunity development.
Source: Sokolovska L, Cistjakovs M, Matroze A, Murovska M, Sultanova A. From Viral Infection to Autoimmune Reaction: Exploring the Link between Human Herpesvirus 6 and Autoimmune Diseases. Microorganisms. 2024; 12(2):362. https://doi.org/10.3390/microorganisms12020362 https://www.mdpi.com/2076-2607/12/2/362 (Full text)

Restrained memory CD8+ T cell responses favors viral persistence and elevated IgG responses in patients with severe Long COVID

Abstract:

During the COVID-19 pandemic it was widely described that certain individuals infected by SARS-CoV-2 experience persistent disease signs and symptoms, Long COVID, which in some cases is very severe with life changing consequences. To maximize our chances of identifying the underpinnings of this illness, we have focused on 121 of the most severe cases from >1000 patients screened in specialized clinics in Sweden and Belgium. We restricted this study to subjects with objective measures of organ damage or dysfunction, >3 months following a verified, but mild-to-moderate SARS-CoV-2 infection.

By performing systems-level immunological testing and comparisons to controls fully convalescent following a similar mild/moderate COVID-19 episode, we identify elevated serological responses to SARS-CoV-2 in severe Long COVID suggestive of chronic antigen stimulation. Persistent viral reservoirs have been proposed in Long COVID and using multiple orthogonal methods for detection of SARS-CoV-2 RNA and protein in plasma we identify a subset of patients with detectable antigens, but with minimal overlap across assays, and no correlation to symptoms or immune measurements.

Elevated serologic responses to SARS-CoV-2 on the other hand were inversely correlated with clonally expanded memory CD8+ T cells, indicating that restrained clonal expansion enables viral persistence, chronic antigen exposure and elevated IgG responses, even if antigen-detection in blood is not universally possible.

Source: Lucie Rodriguez, Ziyang Tan, Tadepally Lakshmikanth, Jun Wang, Hugo Barcenilla, Zoe Swank, Fanglei Zuo, Hassan Abolhassani, Ana Jimena Pavlovitch-Bedzyk, Chunlin Wang, Laura Gonzalez, Constantin Habimana Mugabo, Anette Johnsson, Yang Chen, Anna James, Jaromir Mikes, Linn Kleberg, Christopher Sundling, Mikael Björnson, Malin Nygren Bonnier, Marcus Ståhlberg, Michael Runold, Sophia Björkander, Erik Melén, Isabelle Meyts, Johan Van Weyenbergh, Qian-Pan Hammarström, Mark M Davis, David R. Walt, Nils Landegren, COVID Human Genetic Effort, Alessandro Aiuti, Giorgio Casari, Jean-Laurent Casanova, Marc Jamoulle, Judith Bruchfeld, Petter Brodin. Restrained memory CD8+ T cell responses favors viral persistence and elevated IgG responses in patients with severe Long COVID.

Blood transcriptomics reveal persistent SARS-CoV-2 RNA and candidate biomarkers in Long COVID patients

Abstract:

With an estimated 65 million individuals suffering from Long COVID, validated therapeutic strategies as well as non-invasive biomarkers are direly needed to guide clinical management. We used blood digital transcriptomics in search of viral persistence and Long COVID diagnostic biomarkers in a real-world, general practice-based setting with a long clinical follow-up.

We demonstrate systemic SARS-CoV-2 persistence for more than 2 years after acute COVID-19 infection. A 2-gene biomarker, including SARS-CoV-2 antisense RNA, correctly classifies Long COVID with 93.8% sensitivity and 91.7% specificity. Specific immune transcripts and immunometabolism score correlate to systemic viral load and patient-reported anxiety/depression, providing mechanistic links as well as therapeutic targets to tackle Long COVID.

Source: Soraya Maria MENEZES, MARC JAMOULLE, Maria P Carletto, Bram Van Holm, Leen Moens, Isabelle Meyts, Piet Maes, Johan Van Weyenbergh. Blood transcriptomics reveal persistent SARS-CoV-2 RNA and candidate biomarkers in Long COVID patients. medRxiv 2024.01.14.24301293; doi: https://doi.org/10.1101/2024.01.14.24301293 https://www.medrxiv.org/content/10.1101/2024.01.14.24301293v1 (Full text available as PDF file)

Incidence of persistent SARS-CoV-2 gut infection in patients with a history of COVID-19: Insights from endoscopic examination

Abstract:

Background and study aims Gut infection is common during acute COVID-19, and persistent SARS-CoV-2 gut infection has been reported months after the initial infection, potentially linked to long-COVID syndrome. This study tested the incidence of persistent gut infection in patients with a history of COVID-19 undergoing endoscopic examination.

Patients and methods Endoscopic biopsies were prospectively collected from patients with previous COVID-19 infection undergoing upper or lower gastrointestinal endoscopy (UGE or LGE). Immunohistochemistry was used to detect the presence of persistent SARS-CoV-2 nucleocapsid proteins.

Results A total of 166 UGEs and 83 LGE were analyzed. No significant differences were observed between patients with positive and negative immunostaining regarding the number of previous COVID-19 infections, time since the last infection, symptoms, or vaccination status. The incidence of positive immunostaining was significantly higher in UGE biopsies than in LGE biopsies (37.34% vs. 16.87%, P =0.002). Smokers showed a significantly higher incidence of positive immunostaining in the overall cohort and UGE and LGE subgroups ( P <0.001). Diabetic patients exhibited a significantly higher incidence in the overall cohort ( P =0.002) and UGE subgroup ( P =0.022), with a similar trend observed in the LGE subgroup ( P =0.055).

Conclusions Gut mucosal tissues can act as a long-term reservoir for SARS-CoV-2, retaining viral particles for months following the primary COVID-19 infection. Smokers and individuals with diabetes may be at an increased risk of persistent viral gut infection. These findings provide insights into the dynamics of SARS-CoV-2 infection in the gut and have implications for further research.

Source: Hany M, Sheta E, Talha A, Anwar M, Selima M, Gaballah M, Zidan A, Ibrahim M, Agayby ASS, Abouelnasr AA, Samir M, Torensma B. Incidence of persistent SARS-CoV-2 gut infection in patients with a history of COVID-19: Insights from endoscopic examination. Endosc Int Open. 2024 Jan 5;12(1):E11-E22. doi: 10.1055/a-2180-9872. PMID: 38188925; PMCID: PMC10769582. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769582/ (Full text)

 

Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components

Abstract:

Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce.

These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues.

Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection.

Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.

Source: El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem. 2023 Dec 14. doi: 10.1002/jcb.30514. Epub ahead of print. PMID: 38098317. https://pubmed.ncbi.nlm.nih.gov/38098317/

SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence.

Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation.

However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition.

Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.

Source: Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol. 2023 Nov 2. doi: 10.1038/s41590-023-01661-4. Epub ahead of print. PMID: 37919524. https://www.nature.com/articles/s41590-023-01661-4 (Full text)

Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19

Abstract:

The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role.

We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes.

Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection.

We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms.

We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.

Source: Michael J Peluso, Dylan M Ryder, Robert Flavell, Yingbing Wang, Jelena Levi, Brian H LaFranchi, Tyler-Marie M Deveau, Amanda M Buck, Sadie E Munter, Kofi A Asare, Maya Aslam, Walter Koch, Gyula Szabo, Rebecca Hoh, Monika Deswal, Antonio Rodriguez, Melissa Buitrago, Viva Tai, Uttam Shrestha, Scott Lu, Sarah A Goldberg, Thomas Dalhuisen, Matthew S Durstenfeld, Priscilla Y Hsue, J D Kelly, Nitasha Kumar, Jeffrey N Martin, Aruna Gambhir, Ma Somsouk, Youngho Seo, Steven G Deeks, Zoltan G Laszik, Henry F VanBrocklin, Timothy J Henrich. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to Two Years Following COVID-19. medRxiv 2023.07.27.23293177; doi: https://doi.org/10.1101/2023.07.27.23293177 https://www.medrxiv.org/content/10.1101/2023.07.27.23293177v1.full.pdf+html (Full text available as PDF file)