COVID-19 and Cognitive Function: Evidence for Increased Processing Speed Variability in COVID-19 Survivors and Multifaceted Impairment with LongCOVID Symptoms

Abstract:

Background: There is increasing evidence for cognitive function to be negatively impacted by COVID-19. There is, however, limited research evaluating cognitive function pre- and postCOVID-19 using objective measures.

Methods: We examined processing speed, attention, working memory, executive function and memory in adults (≤69 years) with a history of COVID-19 (n=129; assessed ≥20 days after diagnosis, none acutely unwell), compared to those with no known history of COVID-19 (n=93). We also examined cognitive changes in a sub-group of COVID (n=30) and non-COVID (n=33) participants, compared to their pre-COVID-19 pandemic level (data available through the MyCognition database).

Results: Cross-sectionally, the COVID group showed significantly larger intra-individual variability in processing speed, compared to the non-COVID group. The COVID sub-group also showed significantly larger intra-individual variability in processing speed, compared to their
pre-COVID level; no significant change occurred in non-COVID participants over the same time scale. Other cognitive indices were not significantly impacted in the cross-sectional or withinsubjects investigations, but participants (n=20) who had needed hospitalisation due to COVID19 showed poor attention and executive function relative to those who had not required hospitalisation (n=109). Poor health and long-COVID symptoms  correlated with poor cognitive function across domains in the COVID group.

Conclusions: The findings indicate a limited cognitive impact of COVID-19 with only intraindividual variability in processing speed being significantly impacted in an adult UK sample. However, those who required hospitalisation due to COVID-19 severity and/or experience long-COVID symptoms display multifaceted cognitive impairment and may benefit from repeated cognitive assessments and remediation efforts.

Source: Vakani K, Ratto M, Sandford-James A, Antonova E, Kumari V. COVID-19 and Cognitive Function: Evidence for Increased Processing Speed Variability in COVID-19 Survivors and Multifaceted Impairment with Long-COVID Symptoms. Eur Psychiatry. 2023 May 12:1-34. doi: 10.1192/j.eurpsy.2023.25. Epub ahead of print. PMID: 37170616. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AE8EFA3BF7DC84334EEBC3039427801C/S0924933823000251a.pdf/covid-19-and-cognitive-function-evidence-for-increased-processing-speed-variability-in-covid-19-survivors-and-multifaceted-impairment-with-long-covid-symptoms.pdf (Full text available as PDF file)

Sonographic Diaphragm Abnormalities are an Unexpectedly Frequent Feature of Long COVID Outpatients with Unexplained Dyspnea and Fatigue

Abstract:

Purpose: The primary aim of this study is to define the sonographic diaphragm phenotype of Long COVID rehabilitation outpatients with non-specific dyspnea and fatigue. We analyzed patients referred from a pulmonary post-COVID clinic that were lacking a specific cardiopulmonary diagnosis for their symptoms. Additionally, we report the functional outcomes of subset of patients who completed an outpatient cardiopulmonary physical therapy program.

Methods: This was a retrospective cohort study (n = 58) of consecutive patients referred for neuromuscular ultrasound assessment of diaphragm muscle using B-mode technique. Patients were recruited from a single academic hospital between February 25, 2021 and November 22, 2022.

Results: Sonographic abnormalities were identified in 57% (33/58) of patients, and in the vast majority of cases (33/33) was defined by a low diaphragm muscle thickness. Thinner diaphragm muscles are correlated with lower serum creatinine and creatine kinase values, but there was no association with markers of systemic inflammation. Thirty three patients participated in outpatient cardiopulmonary physical therapy that included respiratory muscle training, and 75.8% (25/33) had documented improvement.

Conclusion: In the outpatient rehabilitation setting, patients with Long COVID display low diaphragm muscle thickness, but intact muscle contractility, with surprising frequency on neuromuscular ultrasound. We speculate this represents a form of disuse atrophy. Also, these patients appear to have a favorable response to cardiopulmonary physical therapy that includes respiratory muscle training.

Source: Prabhav P. DeoJoseph I. BaileyAlexandra S. JensenEllen FarrMeghan FaheyMatthew IsherwoodKeerthana ChakkaLisa F. WolfeIshan RoyMarc A. SalaColin K. Franz. Sonographic Diaphragm Abnormalities are an Unexpectedly Frequent Feature of Long COVID Outpatients with Unexplained Dyspnea and Fatigue. (Full text)

Integrated Care Models for Long Coronavirus Disease

Key points:

  • The wide range of persistent symptoms in long COVID requires a coordinated response from multiple medical specialties.
  • Formalized models of care systems and multidisciplinary collaborations began in early 2021 as health care providers recognized the needs of the affected population.
  • Multidisciplinary models largely exist in academic centers and larger cities; however, most care for PASC patients is provided by the primary care providers.

Introduction:

As of July 2022, there have been more than 540 million confirmed cases of coronavirus disease (severe acute respiratory syndrome coronavirus 2 [SARS CoV-2], coronavirus disease 2019 [COVID-19]) during the global pandemic.
Severe acute cases of SARS-CoV-2 respiratory illness continue to strain communities, health care systems, and nations. Evidence-based medical treatments have greatly improved patient outcomes; however, a growing population of survivors with persisting long-term complications has been recognized. This syndrome has been labeled as long COVID or the Post-Acute Sequelae of SARS CoV-2 (PASC).
There is no single accepted definition of PASC. However, PASC is characterized by persistent and/or delayed symptoms or complications beyond 4 weeks of symptom onset or 3 months after a confirmed SARS CoV-2 infection.
The population that experiences PASC is extremely heterogeneous, from those initially asymptomatic with no prior comorbidities to those with preexisting respiratory conditions and prolonged intensive care unit (ICU) stays. The exact prevalence of PASC in the population is unknown with reports of patients with PASC ranging from 10% to 81% of confirmed cases.
Given this large population, treatment resource, health care needs, and social costs will continue to be a growing burden on already exhausted health care systems.
Source: Surendra Barshikar, MD, MBA, Martin Laguerre, MD, Patricia Gordon, MSN, MPH, APRN, FNP-BC, Marielisa Lopez, MD. Integrated Care Models for Long Coronavirus Disease.

 

Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment

Abstract:

Objective: Attention, working memory and executive processing have been reported to be consistently impaired in Neuro-Long coronavirus disease (COVID). On the hypothesis of abnormal cortical excitability, we investigated the functional state of inhibitory and excitatory cortical regulatory circuits by single “paired-pulse” transcranial magnetic stimulation (ppTMS) and Short-latency Afferent Inhibition (SAI).

Methods: We compared clinical and neurophysiological data of 18 Long COVID patients complaining of persistent cognitive impairment with 16 Healthy control (HC) subjects. Cognitive status was evaluated by means of the Montreal Cognitive Assessment (MoCA) and a neuropsychological evaluation of the executive function domain; fatigue was scored by the Fatigue Severity Scale (FSS). Resting motor threshold (RMT), the amplitude of the motor evoked potential (MEP), Short Intra-cortical Inhibition (SICI), Intra-cortical Facilitation (ICF), Long-interval Intracortical Inhibition (LICI) and Short-afferent inhibition (SAI) were investigated over the motor (M1) cortex.

Results: MoCA corrected scores were significantly different between the two groups (p = 0.023). The majority of the patients’ performed sub-optimally in the neuropsychological assessment of the executive functions. The majority (77.80%) of the patients reported high levels of perceived fatigue in the FSS. RMT, MEPs, SICI and SAI were not significantly different between the two groups. On the other hand, Long COVID patients showed a reduced amount of inhibition in LICI (p = 0.003) and a significant reduction in ICF (p < 0.001).

Conclusions: Neuro-Long COVID patients performing sub-optimally in the executive functions showed a reduction of LICI related to GABAb inhibition and a reduction of ICF related to glutamatergic regulation. No alteration in cholinergic circuits was found.

Significance: These findings can help to better understand the neurophysiological characteristics of Neuro-Long COVID, and in particular, motor cortex regulation in people with “brain fog”.

Source: Manganotti P, Michelutti M, Furlanis G, Deodato M, Buoite Stella A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin Neurophysiol. 2023 May 10;151:83-91. doi: 10.1016/j.clinph.2023.04.010. Epub ahead of print. PMID: 37210757; PMCID: PMC10170904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170904/ (Full text)

Thromboembolism in the Complications of Long COVID-19

Abstract:

SARS-CoV-2 is a +ssRNA helical coronavirus responsible for the global pandemic caused by coronavirus disease 19 (COVID-19). Classical clinical symptoms from primary COVID-19 when symptomatic include cough, fever, pneumonia or even ARDS; however, they are limited primarily to the respiratory system. Long-COVID-19 sequalae is responsible for many pathologies in almost every organ system and may be present in up to 30% of patients who have developed COVID-19.

Our review focuses on how long-COVID-19 (3 -24 weeks after primary symptoms) may lead to an increased risk for stroke and thromboembolism. Patients who were found to be primarily at risk for thrombotic events included critically ill and immunocompromised patients. Additional risk factors for thromboembolism and stroke included diabetes, hypertension, respiratory and cardiovascular disease, and obesity.

The etiology of how long-COVID-19 leads to a hypercoagulable state are yet to be definitively elucidated. However, anti-phospholipid antibodies and elevated D-dimer are present in many patients who develop thromboembolism. In addition, chronic upregulation and exhaustion of the immune system may lead to a pro-inflammatory and hypercoagulable state, increasing the likelihood for induction of thromboembolism or stroke. ‘

This article provides an up-to-date review on the proposed etiologies for thromboembolism and stroke in patients with long-COVID-19 and to assist health care providers in examining patients who may be at a higher risk for developing these pathologies.

Source: Leilani A Lopes, Devendra K Agrawal. Thromboembolism in the Complications of Long COVID-19. Cardiology and Cardiovascular
Medicine. 7 (2023): 123-128. https://fortunepublish.com/articles/10.26502.fccm.92920317.pdf (Full text)

Socioeconomic inequalities of Long COVID: a retrospective population-based cohort study in the United Kingdom

Abstract:

Objectives: To estimate the risk of Long COVID by socioeconomic deprivation and to further examine the inequality by sex and occupation.

Design: We conducted a retrospective population-based cohort study using data from the ONS COVID-19 Infection Survey between 26 April 2020 and 31 January 2022. This is the largest nationally representative survey of COVID-19 in the UK with longitudinal data on occupation, COVID-19 exposure and Long COVID.

Setting: Community-based survey in the UK.

Participants: A total of 201,799 participants aged 16 to 64 years and with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

Main outcome measures: The risk of Long COVID at least 4 weeks after SARS-CoV-2 infection by index of multiple deprivation (IMD) and the modifying effects of socioeconomic deprivation by sex and occupation.

Results: Nearly 10% (n = 19,315) of participants reported having Long COVID. Multivariable logistic regression models, adjusted for a range of variables (demographic, co-morbidity and time), showed that participants in the most deprived decile had a higher risk of Long COVID (11.4% vs. 8.2%; adjusted odds ratio (aOR): 1.46; 95% confidence interval (CI): 1.34, 1.59) compared to the least deprived decile. Significantly higher inequalities (most vs. least deprived decile) in Long COVID existed in healthcare and patient-facing roles (aOR: 1.76; 95% CI: 1.27, 2.44), in the education sector (aOR: 1.68; 95% CI: 1.31, 2.16) and in women (aOR: 1.56; 95% CI: 1.40, 1.73) than men (aOR: 1.32; 95% CI: 1.15, 1.51).

Conclusions: This study provides insights into the heterogeneous degree of inequality in Long COVID by deprivation, sex and occupation. These findings will help inform public health policies and interventions in incorporating a social justice and health inequality lens.

Source: Shabnam S, Razieh C, Dambha-Miller H, Yates T, Gillies C, Chudasama YV, Pareek M, Banerjee A, Kawachi I, Lacey B, Morris EJ, White M, Zaccardi F, Khunti K, Islam N. Socioeconomic inequalities of Long COVID: a retrospective population-based cohort study in the United Kingdom. J R Soc Med. 2023 May 10:1410768231168377. doi: 10.1177/01410768231168377. Epub ahead of print. PMID: 37164035. https://journals.sagepub.com/doi/10.1177/01410768231168377 (Full text)

Factors associated with psychiatric outcomes and coping in Long COVID

Abstract:

The relationship between Long COVID (LC) and psychiatric outcomes, as well as factors associated with presence and absence of these, has so far been insufficiently studied. Here we evaluated psychiatric symptoms and coping among patients with LC and patients recovered from COVID-19 who participated in a large international survey. Given increased rates of psychiatric illness with chronic medical conditions and known immune-inflammatory contributors to psychiatric disease, we hypothesized that a subset, but not the entirety, of LC respondents may have comorbid psychopathology.

A substantial minority of both groups experienced suicidality, depression and anxiety symptoms, with these symptoms being more common in the LC group. LC respondents used more adaptive coping styles. Psychiatric outcomes in LC were associated with younger age, greater reductions in overall health, higher symptom severity, limitations to physical capability, lower income, financial hardship, psychiatric history, employment impact, male sex, men and non-binary gender, and negative experiences with medical professionals, family, friends, partners and employers.

Source: Re’em, Y., Stelson, E.A., Davis, H.E. et al. Factors associated with psychiatric outcomes and coping in Long COVID. Nat. Mental Health 1, 361–372 (2023). https://doi.org/10.1038/s44220-023-00064-6 https://www.nature.com/articles/s44220-023-00064-6 (Full text)

Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms

Abstract:

Numerous investigations have demonstrated significant and long-lasting neurological manifestations of COVID-19. It has been suggested that as many as four out of five patients who sustained COVID-19 will show one or several neurological symptoms that can last months after the infection has run its course. Neurological symptoms are most common in people who are less than 60 years of age, while encephalopathy is more common in those over 60. Biological mechanisms for these neurological symptoms need to be investigated and may include both direct and indirect effects of the virus on the brain and spinal cord. Individuals with Alzheimer’s disease (AD) and related dementia, as well as persons with Down syndrome (DS), are especially vulnerable to COVID-19, but the biological reasons for this are not clear.
Investigating the neurological consequences of COVID-19 is an urgent emerging medical need, since close to 700 million people worldwide have now had COVID-19 at least once. It is likely that there will be a new burden on healthcare and the economy dealing with the long-term neurological consequences of severe SARS-CoV-2 infections and long COVID, even in younger generations. Interestingly, neurological symptoms after an acute infection are strikingly similar to the symptoms observed after a mild traumatic brain injury (mTBI) or concussion, including dizziness, balance issues, anosmia, and headaches. The possible convergence of biological pathways involved in both will be discussed. The current review is focused on the most commonly described neurological symptoms, as well as the possible molecular mechanisms involved.
Source: Granholm A-C. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. Journal of Clinical Medicine. 2023; 12(9):3190. https://doi.org/10.3390/jcm12093190 https://www.mdpi.com/2077-0383/12/9/3190 (Full text)

From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID

Abstract:

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms.
The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses.
In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Source: Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. International Journal of Molecular Sciences. 2023; 24(9):8290. https://doi.org/10.3390/ijms24098290 https://www.mdpi.com/1422-0067/24/9/8290 (Full text)

Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder

Abstract:

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge.
One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms.
It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Source: Chen T-H, Chang C-J, Hung P-H. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. International Journal of Molecular Sciences. 2023; 24(9):8034. https://doi.org/10.3390/ijms24098034 https://www.mdpi.com/1422-0067/24/9/8034 (Full text)