Hypothesis: Astrocyte dysregulation of sympathetic nervous system causes metabolic dysfunction in subset of Long COVID and ME/CFS patients

Abstract:

An overactive sympathetic nervous system (SNS) may cause one subtype of Long COVID. People who are genetically at risk for noradrenergic nerve problems may develop an overactive SNS after an infection. Alternatively, genetic or virus-induced dysregulation of astrocytes could lead to overactivation of the SNS. An overactive SNS could disrupt regulation of immune cells, energy metabolism, sleep homeostasis, respiratory rate, gastrointestinal function, and systemic and cerebral blood pressure, causing fatigue and cognitive dysfunction.

Hypothesis: Long COVID refers to symptoms that continue for more than four weeks after onset of acute COVID-19 illness. This umbrella term includes a wide variety of symptoms and presentations. Long COVID patients may have different types of biological dysfunction, meaning that there may be distinct subtypes of Long COVID. One possible subtype is sympathetic nervous system (SNS) over-activation. This subtype may exist in both Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)1.

Underlying mechanisms of the SNS overactivation subtype: Theoretically, patients with this subtype already have a genetic dysregulation of neuronal norepinephrine (NE) release/clearance or noradrenergic receptor sensitivity2. This latent genetic dysfunction of NE signaling may not cause significant problems unless there is a trigger that causes excess NE release.

As NE affects immune cell signaling, this could result in an over-activation or prolonged activation of the immune system in response to infection with SARS-CoV-2, the virus that causes COVID-193 . This subtype could explain why ME/CFS is often triggered by a virus or brain injury, as these occurrences can trigger noradrenergic signaling3.

Possible mechanisms for the SNS overactivation subtype include viral reservoirs, antibody reaction, and dysregulation of noradrenergic receptor expression. In Long COVID patients, viral antigens and reservoirs that remain in the body long after the initial infection may keep the overactive immune system in an inflammatory state4,5. A healthy person may not react to these SARS-CoV-2 reservoirs, as their functional immune cells should develop immune tolerance. Another possibility is that the immune system is reacting to SARS-CoV-2 antibodies.

Finally, it is possible that excess extracellular NE could keep the SNS and noradrenergic systems in the brain stuck in an overactive state. A prolonged period of increased levels of extracellular NE could lead to dysregulation of noradrenergic receptor expression. The excess extracellular NE may be due to a prolonged release of excess NE during the initial infection, or a failure of the negative feedback mechanisms that should reduce NE release.

Symptoms of an overactive SNS: An overactive SNS explains many of the symptoms found in Long COVID patients, such as IBS/gastrointestinal symptoms6, heart palpitations7, and sleep disturbance8. Additionally, in orthostatic intolerance, which is common in Long COVID and ME/CFS, the release of NE causes pronounced tachycardia. This rapid heart rate may cause palpitations, breathlessness, and chest pain.

Dysfunctional energy metabolism causes fatigue and cognitive dysfunction: An important piece of the puzzle is to explain how a dysregulated SNS could lead to chronic fatigue and brain fog (cognitive dysfunction). The most likely explanation is a dysregulation of metabolic function. There are many ways excess NE could affect metabolism, including enhancing aerobic glycolysis and depleting glycogen stores.

Source: Carnac, T. (2023). Hypothesis: Astrocyte dysregulation of sympathetic nervous system causes metabolic dysfunction in subset of Long COVID and ME/CFS patients. Patient-Generated Hypotheses Journal for Long COVID & Associated Conditions, Vol. 1, 36-43 https://patientresearchcovid19.com/hypothesis-astrocyte-dysregulation-of-sympathetic-nervous-system-causes-metabolic-dysfunction-in-subset-of-long-covid-and-me-cfs-patients-pghj-issue1-may2023/ (Full text)

Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID

Simple Summary:

In this study, we looked at how persistent inflammation affects peripheral body temperature and sympathovagal balance in individuals with long COVID. Increased temperature and reduced heart rate variability were directly related to the increase in inflammatory cytokines and reduction in anti-inflammatory cytokines. We identified a possible “molecular signature” for long COVID, characterised by a Th17 inflammatory profile with a reduced anti-inflammatory response, resulting in alterations in homeostatic functions and sympathovagal balance.

Abstract:

A persistent state of inflammation has been reported during the COVID-19 pandemic. This study aimed to assess short-term heart rate variability (HRV), peripheral body temperature, and serum cytokine levels in patients with long COVID. We evaluated 202 patients with long COVID symptoms categorized them according to the duration of their COVID symptoms (≤120 days, n = 81; >120 days, n = 121), in addition to 95 healthy individuals selected as controls.
All HRV variables differed significantly between the control group and patients with long COVID in the ≤120 days group (p < 0.05), and participants in the long COVID ≤120 days group had higher temperatures than those in the long COVID >120 days group in all regions analysed (p < 0.05).
Cytokine analysis showed higher levels of interleukin 17 (IL-17) and interleukin 2 (IL-2), and lower levels of interleukin 4 (IL-4) (p < 0.05). Our results suggest a reduction in parasympathetic activation during long COVID and an increase in body temperature due to possible endothelial damage caused by the maintenance of elevated levels of inflammatory mediators.
Furthermore, high serum levels of IL-17 and IL-2 and low levels of IL-4 appear to constitute a long-term profile of COVID-19 cytokines, and these markers are potential targets for long COVID-treatment and prevention strategies.
Source: Neves PFMd, Quaresma JAS, Queiroz MAF, Silva CC, Maia EV, Oliveira JSdS, Neves CMAd, Mendonça SdS, Falcão ASC, Melo GS, Santos IBF, Sousa JRd, Santos EJMd, Vasconcelos PFdC, Vallinoto ACR, Falcão LFM. Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID. Biology. 2023; 12(5):749. https://doi.org/10.3390/biology12050749 https://www.mdpi.com/2079-7737/12/5/749 (Full text)

Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: Heart rate variability (HRV) is an objective, non-invasive tool to assessing autonomic dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). People with CFS/ME tend to have lower HRV; however, in the literature there are only a few previous studies (most of them inconclusive) on their association with illness-related complaints. To address this issue, we assessed the value of different diurnal HRV parameters as potential biomarker in CFS/ME and also investigated the relationship between these HRV indices and self-reported symptoms in individuals with CFS/ME.

METHODS: In this case-control study, 45 female patients who met the 1994 CDC/Fukuda definition for CFS/ME and 25 age- and gender-matched healthy controls underwent HRV recording-resting state tests. The intervals between consecutive heartbeats (RR) were continuously recorded over three 5-min periods. Time- and frequency-domain analyses were applied to estimate HRV variables. Demographic and clinical features, and self-reported symptom measures were also recorded.

RESULTS: CFS/ME patients showed significantly higher scores in all symptom questionnaires (p < 0.001), decreased RR intervals (p < 0.01), and decreased HRV time- and frequency-domain parameters (p < 0.005), except for the LF/HF ratio than in the healthy controls. Overall, the correlation analysis reached significant associations between the questionnaires scores and HRV time- and frequency-domain measurements (p < 0.05). Furthermore, separate linear regression analyses showed significant relationships between self-reported fatigue symptoms and mean RR (p = 0.005), RMSSD (p = 0.0268) and HFnu indices (p = 0.0067) in CFS/ME patients, but not in healthy controls.

CONCLUSIONS: Our findings suggest that ANS dysfunction presenting as increased sympathetic hyperactivity may contribute to fatigue severity in individuals with ME/CFS. Further studies comparing short- and long-term HRV recording and self-reported outcome measures with previous studies in larger CFS/ME cohorts are urgently warranted.

Source: Escorihuela RM, Capdevila L, Castro JR, Zaragozà MC, Maurel S, Alegre J, Castro-Marrero J. Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2020 Jan 6;18(1):4. doi: 10.1186/s12967-019-02184-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943898/ (Full article)

Clinical symptoms and markers of disease mechanisms in adolescent chronic fatigue following Epstein-Barr virus infection: An exploratory cross-sectional study

Abstract:

INTRODUCTION: Acute Epstein-Barr virus (EBV) infection is a trigger of chronic fatigue (CF) and Chronic Fatigue Syndrome (CFS). The aim of this cross-sectional study was to explore clinical symptoms as well as markers of disease mechanisms in fatigued and non-fatigued adolescents 6 months after EBV-infection, and in healthy controls.

MATERIALS AND METHODS: A total of 200 adolescents (12-20 years old) with acute EBV infection were assessed 6 months after the initial infectious event and divided into fatigued (EBV CF+) and non-fatigued (EBV CF-) cases based on questionnaire score. The EBV CF+ cases were further sub-divided according to case definitions of CFS. In addition, a group of 70 healthy controls with similar distribution of sex and age was included. Symptoms were mapped with a questionnaire. Laboratory assays included EBV PCR and serology; detailed blood leukocyte phenotyping and serum high-sensitive C-reactive protein; and plasma and urine cortisol and catecholamines. Assessment of autonomic activity was performed with continuous, non-invasive monitoring of cardiovascular variables during supine rest, controlled breathing and upright standing. Differences between EBV CF+ and EBV CF- were assessed by simple and multiple linear regression adjusting for sex as well as symptoms of depression and anxiety. A p-value ≤ 0.05 was considered statistically significant. This study is part of the CEBA-project (Chronic fatigue following acute Epstein-Barr virus infection in adolescents).

RESULTS: The EBV CF+ group had significantly higher scores for all clinical symptoms. All markers of infection and most immune, neuroendocrine and autonomic markers were similar across the EBV CF+ and EBV CF- group. However, the EBV CF+ group had slightly higher serum C-reactive protein (0.48 vs 0.43 mg/L, p=0.031, high-sensitive assay), total T cell (CD3+) count (median 1573 vs 1481 x 106 cells/L, p=0.012), plasma norepinephrine (1420 vs 1113 pmol/L, p=0.01) and plasma epinephrine (363 vs 237 nmol/L, p=0.032); lower low-frequency:high frequency (LF/HF) ratio of heart rate variability at supine rest (0.63 vs 0.76, p=0.008); and an attenuated decline in LF/HF ratio during controlled breathing (-0.11 vs -0.25, p=0.002). Subgrouping according to different CFS diagnostic criteria did not significantly alter the results. Within the EBV CF+ group, there were no strong correlations between clinical symptoms and markers of disease mechanisms. In a multiple regression analysis, serum CRP levels were independently associated with serum cortisol (B= 4.5 x 10-4, p<0.001), urine norepinephrine (B=9.6 x 10-2, p=0.044) and high-frequency power of heart rate variability (B= -3.7 x 10-2, p=0.024).

CONCLUSIONS: In adolescents, CF and CFS 6 months after acute EBV infection are associated with high symptom burden, but no signs of increased viral load and only subtle alterations of immune, autonomic, and neuroendocrine markers of which no one is strongly correlated with symptom scores. A slight sympathetic over parasympathetic predominance is evident in CF and might explain slightly increased CRP levels.

Copyright © 2019. Published by Elsevier Inc.

Source: Kristiansen MS, Stabursvik J, O’Leary EC, Pedersen M, Asprusten TT, Leegaard T, Osnes LT, Tjade T, Skovlund E, Godang K, Wyller VBB. Clinical symptoms and markers of disease mechanisms in adolescent chronic fatigue following Epstein-Barr virus infection: An exploratory cross-sectional study.Brain Behav Immun. 2019 Apr 27. pii: S0889-1591(19)30133-3. doi: 10.1016/j.bbi.2019.04.040. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31039432

Autonomic Nervous System Functioning Related to Nocturnal Sleep in Patients With Chronic Fatigue Syndrome Compared to Tired Controls

Abstract:

STUDY OBJECTIVES: Autonomic nervous system (ANS) dysfunction is common in chronic fatigue syndrome (CFS). One of the main complaints in CFS is unrefreshing sleep. We aimed to study the nocturnal cardiac ANS in different sleep stages in patients filling the 2015 Institute of Medicine CFS diagnostic criteria.

METHODS: In this case series study, the nocturnal heart rate variability and blood pressure (BP) variables in polysomnography were studied in groups of patients with CFS (n = 8) and tired controls (n = 8) aged 16-49 years. Five of the patients with CFS and controls were female. The heart rate variability and BP parameters and heart rate were studied in all sleep stages and wake.

RESULTS: The amount of low-frequency oscillations of the electrocardiography R-R-intervals spectra (LF; predominantly reflects sympathetic activity) was higher for patients with CFS in all sleep stages compared to controls (P< .001). During wake, the amount of LF was lower for the patients with CFS (P< .05). The amount of high-frequency oscillations (HF; reflects parasympathetic activity) was lower in stage N3 sleep in the patients with CFS than for the controls (P< .0001), but, in total, HF was higher in patients with CFS (P< .001). Patients with CFS had higher overall nocturnal systolic and mean BP (P< .0001) and lower heart rate (P< .0001) than controls. No significant differences were found in sleep stage distributions.

CONCLUSIONS: The results suggest a nocturnal dysfunction of the cardiac ANS in CFS, presenting as lower parasympathetic tone in deep sleep and higher sympathetic tone asleep.

Source: Orjatsalo M, Alakuijala A, Partinen M. Autonomic Nervous System Functioning Related to Nocturnal Sleep in Patients With Chronic Fatigue Syndrome Compared to Tired Controls. J Clin Sleep Med. 2017 Dec 13. pii: jc-17-00330. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29246267

Variability of postural orthostatic tachycardia in patients with myalgic encephalomyelitis and orthostatic intolerance

Abstract:

Central nervous system dysfunction with myalgic encephalomyelitis (ME) has been suggested as the main cause of chronic fatigue syndrome. Fluctuation of the symptom severity and hierarchy is a characteristic feature in ME patients. The characteristics of the sympathetic activation may differ between the “good days” and “bad days” in them.

Twenty-four ME patients with orthostatic intolerance underwent a conventional 10-min active standing test and echocardiography both on a “good day” and a “bad day”, defined according to the severity of their symptoms. The mean heart rate at rest was significantly higher on the “bad days” than on the “good days”. During the standing test on a “bad day”, 5 patients (21 %) failed to maintain an upright posture for 10 min, whereas on a “good day” all the 24 patients maintained it.

Postural orthostatic tachycardia (POT) (increase in heart rate ≥30 beats/min) or severe POT (heart rate ≥120 beats/min) was observed on the “bad days” in 10 patients (43 %) who did not suffer from the severe tachycardia on the “good days”, suggesting the exaggerated sympathetic nervous activation.

In contrast, POT did not occur or severe POT was attenuated on the “bad days” in 5 patients (21 %) who developed POT or severe POT on the “good days”, suggesting the impaired sympathetic activation. Echocardiography revealed significantly lower mean values of both the left ventricular end-diastolic diameter and stroke volume index on the “bad days” compared with the “good days”.

In conclusion, in ME patients with orthostatic intolerance, the exaggerated activation of the sympathetic nervous system while standing appears to switch to the impaired sympathetic activation after the system is loaded with the additional accentuated stimuli associated with the preload reduction.

 

Source: Miwa K. Variability of postural orthostatic tachycardia in patients with myalgic encephalomyelitis and orthostatic intolerance. Heart Vessels. 2016 Sep;31(9):1522-8. doi: 10.1007/s00380-015-0744-3. Epub 2015 Sep 15. https://www.ncbi.nlm.nih.gov/pubmed/26374335

 

Orthostatic responses in adolescent chronic fatigue syndrome: contributions from expectancies as well as gravity

Abstract:

BACKGROUND: Orthostatic intolerance is common in chronic fatigue syndrome (CFS), and several studies have documented an abnormal sympathetic predominance in the autonomic cardiovascular response to gravitational stimuli. The aim of this study was to explore whether the expectancies towards standing are contributors to autonomic responses in addition to the gravitational stimulus itself.

METHODS: A total of 30 CFS patients (12-18 years of age) and 39 healthy controls underwent 20° head-up tilt test and a motor imagery protocol of standing upright. Beat-to-beat cardiovascular variables were recorded.

RESULTS: At supine rest, CFS patients had significantly higher heart rate, diastolic blood pressure, and mean arterial blood pressure, and lower stroke index and heart rate variability (HRV) indices. The response to 20° head-up tilt was identical in the two groups. The response to imaginary upright position was characterized by a stronger increase of HRV indices of sympathetic predominance (power in the low-frequency range as well as the ratio low-frequency: high-frequency power) among CFS patients.

CONCLUSIONS: These results suggest that in CFS patients expectancies towards orthostatic challenge might be additional determinants of autonomic cardiovascular modulation along with the gravitational stimulus per se.

 

Source: Wyller VB, Fagermoen E, Sulheim D, Winger A, Skovlund E, Saul JP. Orthostatic responses in adolescent chronic fatigue syndrome: contributions from expectancies as well as gravity. Biopsychosoc Med. 2014 Sep 15;8:22. doi: 10.1186/1751-0759-8-22. eCollection 2014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166398/ (Full article)

 

Heart rate variability in patients with fibromyalgia and patients with chronic fatigue syndrome: a systematic review

Abstract:

OBJECTIVE: The goal of this systematic literature review is to determine whether there are differences and similarities in heart rate variability (HRV) between adult patients with fibromyalgia

(FM), chronic fatigue syndrome (CFS), and healthy pain-free control subjects.

METHODS: To obtain relevant articles, PubMed and Web of Knowledge were searched for case-control studies. Selection of the literature was based on selection criteria ascertaining studies with adult human patient groups comparing HRV. Risk of bias and levels of evidence were determined.

RESULTS: Sixteen case-control studies were included, 10 comparing FM patients to controls and 6 comparing CFS patients to controls. Methodological quality was moderate to good. Both time domain and frequency domain measurements were used. The majority of the researchers observed lower HRV in FM patients compared to healthy control persons, as well as increased sympathetic activity and a blunted autonomic response to stressors. Resistance training improved HRV in FM patients. In CFS patients HRV was only reduced during sleep.

CONCLUSION: FM patients show more HRV aberrances and indices of increased sympathetic activity. Increased sympathetic activity is only present in CFS patients at night. Since direct comparisons are lacking and some confounders have to be taken into account, further research is warranted. The role of pain and causality can be subject of further research, as well as therapy studies directed to reduced HRV.

© 2013 Elsevier Inc. All rights reserved.

Comment in

Source: Meeus M, Goubert D, De Backer F, Struyf F, Hermans L, Coppieters I, De Wandele I, Da Silva H, Calders P. Heart rate variability in patients with fibromyalgia and patients with chronic fatigue syndrome: a systematic review. Semin Arthritis Rheum. 2013 Oct;43(2):279-87. doi: 10.1016/j.semarthrit.2013.03.004. Epub 2013 Jul 6. https://www.ncbi.nlm.nih.gov/pubmed/23838093

 

Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome

Abstract:

BACKGROUND: Cognitive difficulties and autonomic dysfunction have been reported separately in patients with chronic fatigue syndrome (CFS). A role for heart rate variability (HRV) in cognitive flexibility has been demonstrated in healthy individuals, but this relationship has not as yet been examined in CFS. The objective of this study was to examine the relationship between HRV and cognitive performance in patients with CFS.

METHODS: Participants were 30 patients with CFS and 40 healthy controls; the groups were matched for age, sex, education, body mass index, and hours of moderate exercise/week. Questionnaires were used to obtain relevant medical and demographic information, and assess current symptoms and functional impairment. Electrocardiograms, perceived fatigue/effort and performance data were recorded during cognitive tasks. Between-group differences in autonomic reactivity and associations with cognitive performance were analysed.

RESULTS: Patients with CFS showed no deficits in performance accuracy, but were significantly slower than healthy controls. CFS was further characterized by low and unresponsive HRV; greater heart rate (HR) reactivity and prolonged HR-recovery after cognitive challenge. Fatigue levels, perceived effort and distress did not affect cognitive performance. HRV was consistently associated with performance indices and significantly predicted variance in cognitive outcomes.

CONCLUSIONS: These findings reveal for the first time an association between reduced cardiac vagal tone and cognitive impairment in CFS and confirm previous reports of diminished vagal activity.

 

Source: Beaumont A, Burton AR, Lemon J, Bennett BK, Lloyd A, Vollmer-Conna U. Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome. PLoS One. 2012;7(11):e49518. doi: 10.1371/journal.pone.0049518. Epub 2012 Nov 14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498107/ (Full article)

 

Impaired blood pressure variability in chronic fatigue syndrome–a potential biomarker

Abstract:

INTRODUCTION: Autonomic dysfunction is common in chronic fatigue syndrome (CFS). This study set out to derive an autonomic biomarker using a comprehensive assessment of heart rate and blood pressure variability.

METHODS: Heart rate and non-invasive continuous blood pressure measurements (task force monitor) at rest and on standing were performed in CFS (Fukuda n = 68) and matched controls (n = 68) to derive high frequency (HF; parasympathetic) and low frequency (LF; sympathetic) heart rate variability (HRV), systolic (SBPV) and diastolic (DBPV) blood pressure variability. Variables of significance were combined using receiver operator curves to explore the diagnostic utility of parameters particularly at rest.

RESULTS: At rest, LF-HRV (sympathetic) was significantly increased in CFS compared to controls, while parasympathetic markers were significantly reduced (P = 0.006). Total DBP spectral power was increased (P = 0.0003) across all domains, with a shift towards sympathetic and away from parasympathetic SBPV (P = 0.05). On standing, overall SBPV response was significantly reduced with reductions in both sympathetic and parasympathetic components of SBPV (all P < 0.0001). Change in LF-DBP and relative balance of LF/HF DBP on standing differed between CFS and controls (P < 0.0001). Using the 85% sensitivity levels, we determined a threshold for three chosen resting BPV parameters of LF DBP >3.185, rest HF DBP >0.86, rest total DBP >7.05. Achieving all of these differentiated between CFS and controls with 77% sensitivity and 53% specificity.

CONCLUSION: This study has shown that there are objectively measured abnormalities of blood pressure variability in CFS and that these abnormalities have the potential to be a bedside diagnostic tool.

 

Source: Frith J, Zalewski P, Klawe JJ, Pairman J, Bitner A, Tafil-Klawe M, Newton JL. Impaired blood pressure variability in chronic fatigue syndrome–a potential biomarker. QJM. 2012 Sep;105(9):831-8. doi: 10.1093/qjmed/hcs085. Epub 2012 Jun 4. http://qjmed.oxfordjournals.org/content/105/9/831.long (Full article)