Serotonin reduction in post-acute sequelae of viral infection

Highlights:

  • Long COVID is associated with reduced circulating serotonin levels
  • Serotonin depletion is driven by viral RNA-induced type I interferons (IFNs)
  • IFNs reduce serotonin through diminished tryptophan uptake and hypercoagulability
  • Peripheral serotonin deficiency impairs cognition via reduced vagal signaling

Summary:

Post-acute sequelae of COVID-19 (PASC, “Long COVID”) pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction.
Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Source: Wong et al., Serotonin reduction in post-acute sequelae of viral infection, Cell (2023), https://doi.org/
10.1016/j.cell.2023.09.013 https://www.cell.com/cell/fulltext/S0092-8674(23)01034-6 (Full text)

Accelerating discovery: A novel flow cytometric method for detecting fibrin(ogen) amyloid microclots using long COVID as a model

Abstract:

Long COVID has become a significant global health and economic burden, yet there are currently no established methods or diagnostic tools to identify which patients might benefit from specific treatments. One of the major pathophysiological factors contributing to Long COVID is the presence of hypercoagulability; this results in insoluble amyloid microclots that are resistant to fibrinolysis. Our previous research using fluorescence microscopy has demonstrated a significant amyloid microclot load in Long COVID patients. However, this approach lacked the elements of statistical robustness, objectivity, and rapid throughput.

In the current study, we have used imaging flow cytometry for the first time to show a significantly increased concentration and size of these microclots. We identified notable variations in size and fluorescence between microclots in Long COVID and those of controls even using a 20× objective. By combining cell imaging and the high-event-rate and full-sample analysis nature of a conventional flow cytometer, imaging flow cytometry can eliminate erroneous results and increase accuracy in gating and analysis beyond what pure quantitative measurements from conventional flow cytometry can provide.

Although imaging flow cytometry was used in our study, our results suggest that the signals indicating the presence of microclots should be easily detectable using a conventional flow cytometer. Flow cytometry is a more widely available technique than fluorescence microscopy and has been used in pathology laboratories for decades, rendering it a potentially more suitable and accessible method for detecting microclots in individuals suffering from Long COVID or conditions with similar pathology, such as myalgic encephalomyelitis.

Source: Turner S, Laubscher GJ, Khan MA, Kell DB, Pretorius E. Accelerating discovery: A novel flow cytometric method for detecting fibrin(ogen) amyloid microclots using long COVID as a model. Heliyon. 2023 Aug 29;9(9):e19605. doi: 10.1016/j.heliyon.2023.e19605. PMID: 37809592; PMCID: PMC10558872. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558872/ (Full text)

SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition

Abstract:

Background: Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic.

Methods: The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA.

Results: The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgDCD27) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups.

Conclusions: The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.

Source: Limoges MA, Quenum AJI, Chowdhury MMH, Rexhepi F, Namvarpour M, Akbari SA, Rioux-Perreault C, Nandi M, Lucier JF, Lemaire-Paquette S, Premkumar L, Durocher Y, Cantin A, Lévesque S, Dionne IJ, Menendez A, Ilangumaran S, Allard-Chamard H, Piché A, Ramanathan S. SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition. Front Immunol. 2023 Sep 21;14:1223936. doi: 10.3389/fimmu.2023.1223936. PMID: 37809081; PMCID: PMC10551145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551145/ (Full text)

Fibrin microthrombi in bladder urothelium after SARS-CoV-2 infection: Case report

Abstract:

A 45-year-old male with diabetes, hypertension and hyperlipidemia was referred to urology due to persistent symptoms of urinary frequency, urgency, nocturia, erectile dysfunction, and constant pain localized to the bladder, pelvis, and perineal area, 3–4 months after SARS-CoV-2 infection. A bladder biopsy showed urothelial mucosa and submucosa with hemorrhage and fibrin microthrombi in blood vessels. Hydrodistention of the bladder and pelvic floor physical therapy resolved symptoms, though bladder and pain symptoms returned upon reinfection with SARS-CoV-2. Urinalysis revealed elevated urinary interleukin-8, which may indicate localized bladder inflammation.

Source: Hoang Roberts L, Zwaans BMM, Jabbar K, Bartolone SN, Padmanabhan P, Peters KM. Fibrin microthrombi in bladder urothelium after SARS-CoV-2 infection: Case report. Urol Case Rep. 2023 Sep 25;51:102575. doi: 10.1016/j.eucr.2023.102575. PMID: 37829494; PMCID: PMC10565678. https://www.sciencedirect.com/science/article/pii/S2214442023002619 (Full text)

Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies—An Interim Report

Abstract:

There is increasing evidence for an autoimmune aetiology in post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SARS-CoV-2 has now become the main trigger for ME/CFS. We have already conducted two small proof-of-concept studies on IgG depletion by immunoadsorption (IA) in post-infectious ME/CFS, which showed efficacy in most patients.
This observational study aims to evaluate the efficacy of IA in patients with post-COVID-19 ME/CFS. The primary objective was to assess the improvement in functional ability. Due to the urgency of finding therapies for post-COVID-Syndrome (PCS), we report here the interim results of the first ten patients, with seven responders defined by an increase of between 10 and 35 points in the Short-Form 36 Physical Function (SF36-PF) at week four after IA. The results of this observational study will provide the basis for patient selection for a randomised controlled trial (RCT), including sham apheresis, and for an RCT combining IA with B-cell depletion therapy. Trial registration number: NCT05629988.
Source: Stein E, Heindrich C, Wittke K, Kedor C, Kim L, Freitag H, Krüger A, Tölle M, Scheibenbogen C. Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies—An Interim Report. Journal of Clinical Medicine. 2023; 12(19):6428. https://doi.org/10.3390/jcm12196428 https://www.mdpi.com/2077-0383/12/19/6428 (Full text)

Low-dose naltrexone use for the management of post-acute sequelae of COVID-19

Abstract:

The global prevalence of Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) stands at approximately 43 % among individuals who have previously had acute COVID-19. In contrast, in the United States, the National Center for Health Statistics (NCHS) estimates that around 11 % of individuals who have been infected with SARS-CoV-2 go on to experience long COVID. The underlying causes of PASC remains under investigation, and there are no currently established FDA-approved therapies.

One of the leading hypotheses for the cause of PASC is the persistent activation of innate immune cells with increase systemic inflammation. Naltrexone is a medication with anti-inflammatory and immunomodulatory properties that has been used in other conditions that overlap with PASC.

We performed a retrospective review of a clinical cohort of 59 patients at a single academic center who received low-dose naltrexone (LDN) off-label as a potential therapeutic intervention for PASC. The use of LDN was associated with a fewer number of symptoms, improved clinical symptoms (fatigue, post-exertional malaise, unrefreshing sleep, and abnormal sleep pattern), and a better functional status. This observation warrants testing in rigorous, randomized, placebo-controlled clinical trials.

Source: Bonilla H, Tian L, Marconi VC, Shafer R, McComsey GA, Miglis M, Yang P, Bonilla A, Eggert L, Geng LN. Low-dose naltrexone use for the management of post-acute sequelae of COVID-19. Int Immunopharmacol. 2023 Oct 5;124(Pt B):110966. doi: 10.1016/j.intimp.2023.110966. Epub ahead of print. PMID: 37804660. https://www.sciencedirect.com/science/article/pii/S1567576923012912 (Full text)

Predicting Myalgic Encephalomyelitis/Chronic Fatigue Syndrome from Early Symptoms of COVID-19 Infection

Abstract:

It is still unclear why certain individuals after viral infections continue to have severe symptoms. We investigated if predicting myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) development after contracting COVID-19 is possible by analyzing symptoms from the first two weeks of COVID-19 infection.
Using participant responses to the 54-item DePaul Symptom Questionnaire, we built predictive models based on a random forest algorithm using the participants’ symptoms from the initial weeks of COVID-19 infection to predict if the participants would go on to meet the criteria for ME/CFS approximately 6 months later.
Early symptoms, particularly those assessing post-exertional malaise, did predict the development of ME/CFS, reaching an accuracy of 94.6%. We then investigated a minimal set of eight symptom features that could accurately predict ME/CFS. The feature reduced models reached an accuracy of 93.5%. Our findings indicated that several IOM diagnostic criteria for ME/CFS occurring during the initial weeks after COVID-19 infection predicted Long COVID and the diagnosis of ME/CFS after 6 months.
Source: Hua C, Schwabe J, Jason LA, Furst J, Raicu D. Predicting Myalgic Encephalomyelitis/Chronic Fatigue Syndrome from Early Symptoms of COVID-19 Infection. Psych. 2023; 5(4):1101-1108. https://doi.org/10.3390/psych5040073 https://www.mdpi.com/2624-8611/5/4/73

Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity

Abstract:

Background: Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs).

Methods: Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge.

Results: We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts.

Conclusion: Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.

Source: Berentschot Julia C., Drexhage Hemmo A., Aynekulu Mersha Daniel G., Wijkhuijs Annemarie J. M., GeurtsvanKessel Corine H., Koopmans Marion P. G., Voermans Jolanda J. C., Hendriks Rudi W., Nagtzaam Nicole M. A., de Bie Maaike, Heijenbrok-Kal Majanka H., Bek L. Martine, Ribbers Gerard M., van den Berg-Emons Rita J. G., Aerts Joachim G. J. V., Dik Willem A., Hellemons Merel E. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Frontiers in Immunology, vol 14, 2023. DOI=10.3389/fimmu.2023.1254899 ISSN=1664-3224 https://www.frontiersin.org/articles/10.3389/fimmu.2023.1254899/full (Full text)

 

Low growth hormone secretion associated with post-acute sequelae SARS-CoV-2 infection (PASC) neurologic symptoms: A case-control pilot study

Abstract:

Objective: To determine if patients that develop lingering neurologic symptoms of fatigue and “brain fog” after initial recovery from coronavirus disease 2019 (COVID-19) have persistent low growth hormone (GH) secretion as seen in other conditions with similar symptom etiology.

Design: In this case-control observational pilot study, patients reporting lingering neurologic post-acute sequelae of SARS-CoV-2 (PASC, n = 10) symptoms at least 6 months after initial infection were compared to patients that recovered from COVID-19 without lingering symptoms (non-PASC, n = 13). We compared basic blood chemistry and select metabolites, lipids, hormones, inflammatory markers, and vitamins between groups. PASC and non-PASC subjects were tested for neurocognition and GH secretion, and given questionnaires to assess symptom severity. PASC subjects were also tested for glucose tolerance and adrenal function.

Results: PASC subjects reported significantly worse fatigue, sleep quality, depression, quality of life, and gastrointestinal discomfort compared to non-PASC. Although PASC subjects self-reported poor mental resilience, cognitive testing did not reveal significant differences between groups. Neurologic PASC symptoms were not linked to inflammatory markers or adrenal insufficiency, but were associated with reduced growth hormone secretion.

Conclusions: Neurologic PASC symptoms are associated with gastrointestinal discomfort and persistent disruption of GH secretion following recovery from acute COVID-19.

Source: Wright TJ, Pyles RB, Sheffield-Moore M, Deer RR, Randolph KM, McGovern KA, Danesi CP, Gilkison CR, Ward WW, Vargas JA, Armstrong PA, Lindsay SE, Zaidan MF, Seashore J, Wexler TL, Masel BE, Urban RJ. Low growth hormone secretion associated with post-acute sequelae SARS-CoV-2 infection (PASC) neurologic symptoms: A case-control pilot study. Mol Cell Endocrinol. 2023 Oct 8:112071. doi: 10.1016/j.mce.2023.112071. Epub ahead of print. PMID: 37816478. https://www.sciencedirect.com/science/article/abs/pii/S0303720723002228

THU581 Possible Markers For Myalgic Encephalomyelitis / Chronic Fatigue Syndrome Developed In Long Covid: Utility Of Serum Ferritin And Insulin-like Growth Factor-I

Abstract:

Almost three years have passed since coronavirus disease 2019 (COVID-19) pandemic broke out, and along with the number of acute COVID-19 patients, the number of patients suffering from chronic prolonged symptoms after COVID-19, long COVID, or post COVID-19 condition, has also increased.

We established an outpatient clinic specialized for COVID-19 after care (CAC) in Okayama University Hospital in Japan in February 2021. Our recent study has revealed that the most common symptom is “fatigue”, a part of which potentially may develop into myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, the pathogenesis and specific prognosticator have yet to be elucidated. The aim of this study was to elucidate the clinical characteristics of patients who developed ME/CFS after COVID-19.

This retrospective observational study investigated the patients who visited our CAC outpatient clinic between February 2021 and March 2022. Of the 234 patients, 139 (59.4%) had fatigue symptoms, of whom 50 (21.4%) met the criteria for ME/CFS (ME/CFS group), while other 89 did not (non-ME/CFS group); 95 patients had no fatigue complaints (no-fatigue group). Although the patients’ backgrounds were not significantly different among the three groups, the ME/CFS group presented the highest scores on the self-rating symptom scales, including the Fatigue Assessment Scale (FAS), EuroQol, and Self-Rating Depression Scale (SDS).

Of note, serum ferritin levels, which were correlated to FAS and SDS scores, were significantly higher in the ME/CFS group (193.0 μg/mL; interquartile range (IQR), 58.8-353.8) than those of non-ME/CFS (98.2 μg/mL; 40.4-251.5) and no-fatigue (86.7 μg/mL; 37.5-209.0) groups, and this trend was prominent in the female patients. Endocrine workup further showed that the ME/CFS group had higher thyrotropin levels but lower growth hormone levels in the serum, and that insulin-like growth factor (IGF)-I levels were inversely correlated with ferritin levels (R = -0.328, p < 0.05).

Collectively, we revealed that serum ferritin levels could be a possible predictor for developing ME/CFS related to long COVID, especially in female patients. Earlier studies have suggested that hyperferritinemia is a clinical feature in the patients of long COVID, in which hepcidin-like effects could also be involved. Our present study also uncovered a relationship between hyperferrinemia and endocrine disorders among patients developing ME/CFS after COVID-19, although further investigations are necessary to understand the characteristics of ferritin metabolism.

Presentation: Thursday, June 15, 2023

Source: Yukichika Yamamoto, Yuki Otsuka, Kazuki Tokumasu, Naruhiko Sunada, Yasuhiro Nakano, Hiroyuki Honda, Yasue Sakurada, Toru Hasegawa, Hideharu Hagiya, Fumio Otsuka, THU581 Possible Markers For Myalgic Encephalomyelitis / Chronic Fatigue Syndrome Developed In Long Covid: Utility Of Serum Ferritin And Insulin-like Growth Factor-I, Journal of the Endocrine Society, Volume 7, Issue Supplement_1, October-November 2023, bvad114.1370, https://doi.org/10.1210/jendso/bvad114.1370 (Full text available as PDF file)