Serotonin reduction in post-acute sequelae of viral infection

Highlights:

  • Long COVID is associated with reduced circulating serotonin levels
  • Serotonin depletion is driven by viral RNA-induced type I interferons (IFNs)
  • IFNs reduce serotonin through diminished tryptophan uptake and hypercoagulability
  • Peripheral serotonin deficiency impairs cognition via reduced vagal signaling

Summary:

Post-acute sequelae of COVID-19 (PASC, “Long COVID”) pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction.
Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Source: Wong et al., Serotonin reduction in post-acute sequelae of viral infection, Cell (2023), https://doi.org/
10.1016/j.cell.2023.09.013 https://www.cell.com/cell/fulltext/S0092-8674(23)01034-6 (Full text)

Autonomic dysregulation in long-term patients suffering from Post-COVID-19 Syndrome assessed by heart rate variability

Abstract:

Post-COVID-19 Syndrome (PCS) is a condition with multiple symptoms partly related to dysregulation of the autonomic nerve system. Assessment of heart rate variability (HRV) using 24 h Holter-ECG may serve as a surrogate to characterize cardiac autonomic activity. A prospective study including 103 PCS patients (time after infection = 252 days, age = 49.0 ± 11.3 years, 45.7% women) was performed and patients underwent detailed clinical screening, cardiopulmonary exercise testing, and 24 h Holter monitoring.

Data of PCS patients was compared to 103 CAD patients and a healthy control group (n = 90). After correction for age and sex, frequency-related variables differed in PCS patients compared to controls including LF/HFpower, LF/HFnu, and LF/HF ratio (24 h; p ≤ 0.001). By contrast, these variables were largely comparable between PCS and CAD patients, while sympathetic activation was highest in PCS patients during the 24 h period.

Overall, PCS patients showed disturbed diurnal adjustment of HRV, with impaired parasympathetic activity at night. Patients hospitalized during acute infection showed an even more pronounced overactivation of sympathetic activity compared to patients who underwent ambulant care.

Our data demonstrate persistent HRV alterations in PCS patients with long-term symptom duration, suggesting a sustained impairment of sympathovagal balance. Moreover, sympathetic overstimulation and diminished parasympathetic response in long-term PCS patients are comparable to findings in CAD patients. Whether HRV variables have a prognostic value in PCS and/or might serve as biomarkers indicating a successful interventional approach warrants further longitudinal studies.

Source: Mooren FC, Böckelmann I, Waranski M, Kotewitsch M, Teschler M, Schäfer H, Schmitz B. Autonomic dysregulation in long-term patients suffering from Post-COVID-19 Syndrome assessed by heart rate variability. Sci Rep. 2023 Sep 22;13(1):15814. doi: 10.1038/s41598-023-42615-y. PMID: 37739977; PMCID: PMC10516975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516975/ (Full text)

Impaired parasympathetic function in long-COVID postural orthostatic tachycardia syndrome – a case-control study

Abstract:

Purpose: Eighty percent of patients infected by SARS-CoV-2 report persistence of one symptom beyond the 4-week convalescent period. Those with orthostatic tachycardia and orthostatic symptoms mimicking postural tachycardia syndrome, they are defined as Long-COVID POTS [LCP]. This case-control study investigated potential differences in autonomic cardiovascular regulation between LCP patients and healthy controls.

Methods: Thirteen LCP and 16 healthy controls, all female subjects, were studied without medications. Continuous blood pressure and ECG were recorded during orthostatic stress test, respiratory sinus arrhythmia, and Valsalva maneuver. Time domain and power spectral analysis of heart rate [HR] and systolic blood pressure [SBP] variability were computed characterizing cardiac autonomic control and sympathetic peripheral vasoconstriction.

Results: LCP had higher deltaHR (+ 40 ± 6 vs. + 21 ± 3 bpm, p = 0.004) and deltaSBP (+ 8 ± 4 vs. -1 ± 2 mmHg, p = 0.04) upon standing; 47% had impaired Valsalva maneuver ratio compared with 6.2% in controls (p = 0.01). Spectral analysis revealed that LCP had lower RMSSD (32.1 ± 4.6 vs. 48.9 ± 6.8 ms, p = 0.04) and HFRRI, both in absolute (349 ± 105 vs. 851 ± 253ms2, p = 0.03) and normalized units (32 ± 4 vs. 46 ± 4 n.u., p = 0.02). LFSBP was similar between groups.

Conclusions: LCP have reduced cardiovagal modulation, but normal sympathetic cardiac and vasoconstrictive functions. Impaired parasympathetic function may contribute to the pathogenesis of Long-COVID POTS syndrome.

Source: Rigo S, Urechie V, Diedrich A, Okamoto LE, Biaggioni I, Shibao CA. Impaired parasympathetic function in long-COVID postural orthostatic tachycardia syndrome – a case-control study. Bioelectron Med. 2023 Sep 6;9(1):19. doi: 10.1186/s42234-023-00121-6. PMID: 37670400; PMCID: PMC10481607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481607/ (Full text)

Vagus nerve inflammation contributes to dysautonomia in COVID-19

Abstract:

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction.

We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19.

Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.

Source:Woo MS, Shafiq M, Fitzek A, Dottermusch M, Altmeppen H, Mohammadi B, Mayer C, Bal LC, Raich L, Matschke J, Krasemann S, Pfefferle S, Brehm TT, Lütgehetmann M, Schädler J, Addo MM, Schulze Zur Wiesch J, Ondruschka B, Friese MA, Glatzel M. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 2023 Jul 15. doi: 10.1007/s00401-023-02612-x. Epub ahead of print. PMID: 37452829. https://link.springer.com/article/10.1007/s00401-023-02612-x (Full text)

Vagus Nerve Dysfunction in the Post-COVID-19 Condition

Abstract:

Background: The post-COVID-19 condition (PCC) is a disabling syndrome affecting 5-15% of subjects who survive COVID-19. SARS-CoV-2 mediated vagus nerve dysfunction could explain some of the PCC symptoms, including persistent dysphonia, dysphagia, dyspnea, dizziness, tachycardia, orthostatic hypotension, gastrointestinal disturbances or neurocognitive complaints.

Methods: We performed a cross-sectional pilot study in subjects with PCC with symptoms suggesting vagus nerve dysfunction (n=30) and compared them to subjects fully recovered from acute COVID-19 (n=14) and individuals never infected with SARS-CoV-2 (n=16), matched by age and sex. We evaluated the structure and function of the vagus nerve, including dysphonia, dysphagia, and dysautonomia tests, and evaluated the structure and function of respiratory muscles with vagus nerve innervation.

Findings: Participants were mostly (80%) women with median 44 years of age. Their most prevalent symptoms were cognitive dysfunction (83%), dyspnea (80%) and tachycardia (80%). Compared with COVID-19-recovered and uninfected controls, respectively, subjects with PCC were more likely to show thickening and hyperechogenic vagus nerve in neck ultrasounds (mean ± SD left vagus nerve cross-sectional area: 2.4 ± 0.97mm2 vs. 2 ± 0.52mm2 vs. 1.9 ± 0.73 mm2, p=0.080), flattened diaphragmatic curve (47% vs 6% vs 14%, p=0.007), reduced esophageal peristalsis (34% vs 0% vs 21%, p=0.020), gastroesophageal reflux (34% vs 19% vs 7%, p=0.130), hiatal hernia (25% vs 0% vs 7%, p=0.050) and reduced maximal inspiratory pressure in functional respiratory tests (62% vs. 6% vs. 17%, p ≤0.001).

Interpretation: Vagus nerve dysfunction has a central pathogenic role in the pathophysiology of the post-COVID condition.

Source: Lladós, Gemma and Massanella, Marta and Coll-Fernández, Roser and Rodríguez, Raúl and Hernández, Electra and Lucente, Giuseppe and López, Cristina and Loste, Cora and Santos, José Ramón and España-Cueto, Sergio and Nevot, Maria and Muñoz-López, Francisco and Arrieta, Sandra Silva and Brander, Christian and Durà, Maria José and Cuadras, Patricia and Bechini, Jordi and Tenesa, Montserrat and Martinez-Piñeiro, Alicia and Herrero, Cristina and Chamorro, Anna and Garcia, Anna and Grau, Eulalia and Clotet, Bonaventura and Paredes, Roger and Mateu, Lourdes and Unit, Germans Trias Long-COVID, Vagus Nerve Dysfunction in the Post-COVID-19 Condition. Available at SSRN: https://ssrn.com/abstract=4479598 or http://dx.doi.org/10.2139/ssrn.4479598

Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance

Abstract:

Myalgic encephalomyelitis, ME, previously also known as chronic fatigue syndrome (CFS) is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection.

The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation.

Here we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation (INMEST) targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME-patients and correlating with a ∼30% reduction in overall symptom scores after eight weeks of treatment.

By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation.

The mechanisms of symptom relief remains to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.

Source: Lucie Rodriguez, Christian Pou, Tadepally Lakshmikanth, Jingdian Zhang, Constantin Habimana Mugabo, Jun Wang, Jaromir Mikes, Axel Olin, Yang Chen, Joanna Rorbach, Jan-Erik Juto, Tie Qiang Li, Per Julin, Petter Brodin, Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance, Oxford Open Immunology, 2023;, iqad003, https://doi.org/10.1093/oxfimm/iqad003 (Full text available as PDF file)

Chronic cough in post-COVID syndrome: Laryngeal electromyography findings in vagus nerve neuropathy

Abstract:

Background: Despite being a new entity, there is a large amount of information on the characteristics of SARS-CoV-2 infection and the symptoms of the acute phase; however, there are still many unknowns about the clinical features and pathophysiology of post-COVID syndrome. Refractory chronic cough is one of the most prevalent symptoms and carries both a medical problem and a social stigma. Many recent studies have highlighted the role of SARS-CoV-2 neurotropism, but no studies have demonstrated vagus nerve neuropathy as a cause of persistent chronic cough or other COVID-19 long-term effects.

Objective: The main objective was to assess the involvement of the vagus nerve neuropathy as a cause of chronic cough and other post-COVID syndrome symptoms.

Material and methods: This was a single-center observational study with prospective clinical data collected from 38 patients with chronic cough and post-COVID-19 syndrome. Clinical characteristics and laryngeal electromyographic findings were analyzed.

Results: Clinical data from 38 patients with chronic cough after 12 weeks of the acute phase of COVID-19 infection were analyzed. Of these patients, 81.6% suffered from other post-COVID conditions and, 73.6% reported fluctuating evolution of symptoms. Laryngeal electromyography (LEMG) of the thyroarytenoid (TA) muscles and cricothyroid (CT) muscles was pathological in 76.3% of the patients. Of the patients with abnormal LEMG, chronic denervation was the most frequent finding (82.8%), 10.3% presented acute denervation signs, and 6.9% presented myopathic pattern in LEMG.

Conclusions: LEMG studies suggest the existence of postviral vagus nerve neuropathy after SARS-CoV-2 infection that could explain chronic cough in post-COVID syndrome.

Source: García-Vicente P, Rodríguez-Valiente A, Górriz Gil C, Márquez Altemir R, Martínez-Pérez F, López-Pajaro LF, et al. (2023) Chronic cough in post-COVID syndrome: Laryngeal electromyography findings in vagus nerve neuropathy. PLoS ONE 18(3): e0283758. https://doi.org/10.1371/journal.pone.0283758 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283758 (Full text)

Impaired Vagal Activity in Long-COVID-19 Patients

Abstract:

Long-COVID-19 refers to the signs and symptoms that continue or develop after the “acute COVID-19” phase. These patients have an increased risk of multiorgan dysfunction, readmission, and mortality. In Long-COVID-19 patients, it is possible to detect a persistent increase in D-Dimer, NT-ProBNP, and autonomic nervous system dysfunction.

To verify the dysautonomia hypothesis in Long-COVID-19 patients, we studied heart rate variability using 12-lead 24-h ECG monitoring in 30 Long-COVID-19 patients and 20 No-COVID patients. Power spectral analysis of heart rate variability was lower in Long-COVID-19 patients both for total power (7.46 ± 0.5 vs. 8.08 ± 0.6; p < 0.0001; Cohens-d = 1.12) and for the VLF (6.84 ± 0.8 vs. 7.66 ± 0.6; p < 0.0001; Cohens-d = 1.16) and HF (4.65 ± 0.9 vs. 5.33 ± 0.9; p = 0.015; Cohens-d = 0.76) components. The LF/HF ratio was significantly higher in Long-COVID-19 patients (1.46 ± 0.27 vs. 1.23 ± 0.13; p = 0.001; Cohens-d = 1.09). On multivariable analysis, Long-COVID-19 is significantly correlated with D-dimer (standardized β-coefficient = 0.259), NT-ProBNP (standardized β-coefficient = 0.281), HF component of spectral analysis (standardized β-coefficient = 0.696), and LF/HF ratio (standardized β-coefficient = 0.820).

Dysautonomia may explain the persistent symptoms in Long COVID-19 patients. The persistence of a procoagulative state and an elevated myocardial strain could explain vagal impairment in these patients. In Long-COVID-19 patients, impaired vagal activity, persistent increases of NT-ProBNP, and a prothrombotic state require careful monitoring and appropriate intervention.

Source: Acanfora D, Nolano M, Acanfora C, Colella C, Provitera V, Caporaso G, Rodolico GR, Bortone AS, Galasso G, Casucci G. Impaired Vagal Activity in Long-COVID-19 Patients. Viruses. 2022 May 13;14(5):1035. doi: 10.3390/v14051035. PMID: 35632776; PMCID: PMC9147759. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147759/ (Full text)

Risk factors and multidimensional assessment of long COVID fatigue: a nested case-control study

Abstract:

Background: Fatigue is the most prevalent and debilitating long COVID symptom, however risk factors and pathophysiology of this condition remain unknown. We assessed risk factors for long COVID fatigue and explored its possible pathophysiology.

Methods: Nested case-control study in a COVID recovery clinic. Individuals with (cases) and without (controls) significant fatigue were included. We performed a multidimensional assessment evaluating various parameters, including pulmonary function tests and cardiopulmonary exercise testing, and implemented multivariable logistic regression to assess risk factors for significant long COVID fatigue.

Results: Total of 141 individuals were included. Mean age was 47 (SD 13) years; 115 (82%) were recovering from mild COVID-19. Mean time for evaluation was 8 months following COVID-19. Sixty-six (47%) individuals were classified with significant long COVID fatigue. They had significantly higher number of children, lower proportion of hypothyroidism, higher proportion of sore throat during acute illness and long COVID symptoms, and of physical limitation in daily activities. Individuals with fatigue had poorer sleep quality and higher degree of depression. They had significantly lower heart rate [153.52 (22.64) vs 163.52 (18.53), p=0.038] and oxygen consumption per Kg [27.69 (7.52) vs 30.71 (7.52), p=0.036] at peak exercise. The two independent risk factors for fatigue identified in multivariable analysis were peak exercise heart rate (odds ratio [OR] 0.79 per 10 beats/minute, 95% confidence interval [CI] 0.65-0.96, p=0.019); and long COVID memory impairment (OR 3.76, 95% CI 1.57-9.01, p=0.003).

Conclusions: Long COVID fatigue may be related to autonomic dysfunction, impaired cognition and decreased mood. This may suggest a limbic-vagal pathophysiology. Clinical Trial registration: NCT04851561.

Source: Margalit I, Yelin D, Sagi M, Rahat MM, Sheena L, Mizrahi N, Gordin Y, Agmon H, Epstein NK, Atamna A, Tishler O, Daitch V, Babich T, Abecasis D, Yarom Y, Kazum S, Shitenberg D, Baltaxe E, Elkana O, Shapira-Lichter I, Leibovici L, Yahav D. Risk factors and multidimensional assessment of long COVID fatigue: a nested case-control study. Clin Infect Dis. 2022 Apr 11:ciac283. doi: 10.1093/cid/ciac283. Epub ahead of print. PMID: 35403679.  https://pubmed.ncbi.nlm.nih.gov/35403679/

Study points to vagus nerve dysfunction as a central pathophysiological feature of long COVID

New research to be presented at this year’s European Congress of Clinical Microbiology and Infectious Diseases (ECCMID 2022, Lisbon, 23-26 April) suggests that many of the symptoms connected to post-COVID syndrome (PCC, also known as long COVID) could be linked to the effect of the virus on the vagus nerve – one of the most important multi-functional nerves in the body. The study is by Dr Gemma Lladós and Dr Lourdes Mateu, University Hospital Germans Trias i Pujol, Badalona, Spain, and colleagues.

The vagus nerve extends from the brain down into the torso and into the heart, lungs and intestines, as well as several muscles including those involved in swallowing. As such, this nerve is responsible for a wide variety of bodily functions including controlling heart rate, speech, the gag reflex, transferring food from the mouth to the stomach, moving food through the intestines, sweating, and many others.

Read the rest of this article HERE..

Source: European Society of Clinical Microbiology and Infectious Diseases. https://www.news-medical.net/news/20220212/Study-points-to-vagus-nerve-dysfunction-as-a-central-pathophysiological-feature-of-long-COVID.aspx