Chronic inflammatory response syndrome: a review of the evidence of clinical efficacy of treatment

Abstract:

Chronic Inflammatory Response Syndrome (CIRS) is an acquired medical condition characterized by innate immune dysregulation following respiratory exposure to water-damaged buildings (WDB). This chronic syndrome involves a range of symptoms that simultaneously affecting multiple organ systems. The purpose of this literature review was to search the published literature for successful treatments for chronic inflammatory response syndrome, an under-recognized, underdiagnosed, multisymptom multisystem illness that can affect up to 25% of the population, thus representing a silent epidemic.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a common misdiagnosis for CIRS, is an entity that has broader awareness within the medical community despite the absence of a defined etiology, biomarkers or a treatment protocol that reverses the underlying conditions. Therefore, the search also included treatments for ME/CFS and sick building syndrome (SBS). Thirteen articles referenced treatment for CIRS, and 22 articles referenced treatment for CFS.

The only treatment with documented clinical efficacy was the Shoemaker Protocol, which was described in 11 of the 13 articles. This treatment protocol exhibits superior outcomes compared with the treatment protocols for ME/CFS.

Source: Dooley M, Vukelic A, Jim L. Chronic inflammatory response syndrome: a review of the evidence of clinical efficacy of treatment. Ann Med Surg (Lond). 2024 Nov 8;86(12):7248-7254. doi: 10.1097/MS9.0000000000002718. PMID: 39649915; PMCID: PMC11623837. https://pmc.ncbi.nlm.nih.gov/articles/PMC11623837/ (Full text)

Long COVID and hypermobility spectrum disorders have shared pathophysiology

Abstract:

Hypermobility spectrum disorders (HSD) and hypermobile Ehlers-Danlos syndrome (hEDS) are the most common joint hypermobility conditions encountered by physicians, with hypermobile and classical EDS accounting for >90% of all cases. Hypermobility has been detected in up to 30-57% of patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), fibromyalgia, postural orthostatic tachycardia syndrome (POTS), and long COVID (LC) compared to the general population.

Extrapulmonary symptoms, including musculoskeletal pain, dysautonomia disorders, cognitive disorders, and fatigue, are seen in both LC and HSD. Additionally, ME/CFS has overlapping symptoms with those seen in HSD. Mast cell activation and degranulation occurring in both LC and ME/CFS may result in hyperinflammation and damage to connective tissue in these patients, thereby inducing hypermobility.

Persistent inflammation may result in the development or worsening of HSD. Hence, screening for hypermobility and other related conditions including fibromyalgia, POTS, ME/CFS, chronic pain conditions, joint pain, and myalgia is essential for individuals experiencing LC. Pharmacological treatments should be symptom-focused and geared to a patient’s presentation. Paced exercise, massage, yoga, and meditation may also provide benefits.

Source: Ganesh R, Munipalli B. Long COVID and hypermobility spectrum disorders have shared pathophysiology. Front Neurol. 2024 Sep 5;15:1455498. doi: 10.3389/fneur.2024.1455498. PMID: 39301475; PMCID: PMC11410636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410636/ (Full text)

Replicated blood-based biomarkers for Myalgic Encephalomyelitis not explicable by inactivity

Abstract:

Myalgic Encephalomyelitis (ME; sometimes referred to as chronic fatigue syndrome) is a relatively common and female-biased disease of unknown pathogenesis that profoundly decreases patients’ health-related quality-of-life. ME diagnosis is hindered by the absence of robustly-defined and specific biomarkers that are easily measured from available sources such as blood, and unaffected by ME patients’ low level of physical activity.

Previous studies of blood biomarkers have not yielded replicated results, perhaps due to low study sample sizes (n<100). Here, we use UK Biobank (UKB) data for up to 1,455 ME cases and 131,303 population controls to discover hundreds of molecular and cellular blood traits that differ significantly between cases and controls. Importantly, 116 of these traits are replicated, as they are significant for both female and male cohorts.

Our analysis used semi-parametric efficient estimators, an initial Super Learner fit followed by a one-step correction, three types of mediators, and natural direct and indirect estimands, to decompose the average effect of ME status on molecular and cellular traits. Strikingly, these trait differences cannot be explained by ME cases’ restricted activity.

Of 3,237 traits considered, ME status had a significant effect on only one, via the “Duration of walk” (UKB field 874) mediator. By contrast, ME status had a significant direct effect on 290 traits (9%). As expected, these effects became more significant with increased stringency of case and control definition.

Significant female and male traits were indicative of chronic inflammation, insulin resistance and liver disease. Individually, significant effects on blood traits, however, were not sufficient to cleanly distinguish cases from controls. Nevertheless, their large number, lack of sex-bias, and strong significance, despite the ‘healthy volunteer’ selection bias of UKB participants, keep alive the future ambition of a blood-based biomarker panel for accurate ME diagnosis.

Source: Sjoerd V Beentjes, Julia Kaczmarczyk, Amanda Cassar, Gemma Louise Samms, Nima S Hejazi, Ava Khamseh, Chris P Ponting. Replicated blood-based biomarkers for Myalgic Encephalomyelitis not explicable by inactivity. medRxiv 2024.08.26.24312606; doi: https://doi.org/10.1101/2024.08.26.24312606 https://www.medrxiv.org/content/10.1101/2024.08.26.24312606v1 (Full text available as PDF file)

Long COVID as a Disease of Accelerated Biological Aging: An Opportunity to Translate Geroscience Interventions

Abstract:

It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy. Furthermore, there remains a paucity of clinical trials addressing the biological root causes of this disease. Notably, the symptoms of long COVID-including but not limited to exercise intolerance, cognitive impairment, orthostasis, and functional decline-are typically seen with advancing age.

Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a framework for studying long COVID as a state of effectively accelerated biological aging. Thus, we comprehensively review here the role of biological hallmarks of aging in long COVID, identifying research gaps and proposing directions for future preclinical and clinical studies.

Source: Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a Disease of Accelerated Biological Aging: An Opportunity to Translate Geroscience Interventions. Ageing Res Rev. 2024 Jun 28:102400. doi: 10.1016/j.arr.2024.102400. Epub ahead of print. PMID: 38945306. https://www.sciencedirect.com/science/article/abs/pii/S1568163724002186

Blood Markers Show Neural Consequences of LongCOVID-19

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists throughout the world with over 65 million registered cases of survivors with post-COVID-19 sequelae, also known as LongCOVID-19 (LongC). LongC survivors exhibit various symptoms that span multiple organ systems, including the nervous system.
To search for neurological markers of LongC, we investigated the soluble biomolecules present in the plasma and the proteins associated with plasma neuronal-enriched extracellular vesicles (nEVs) in 33 LongC patients with neurological impairment (nLongC), 12 COVID-19 survivors without any LongC symptoms (Cov), and 28 pre-COVID-19 healthy controls (HC). COVID-19 positive participants were infected between 2020 and 2022, not hospitalized, and were vaccinated or unvaccinated before infection.
IL-1β was significantly increased in both nLongC and Cov and IL-8 was elevated in only nLongC. Both brain-derived neurotrophic factor and cortisol were significantly elevated in nLongC and Cov compared to HC. nEVs from people with nLongC had significantly elevated protein markers of neuronal dysfunction, including amyloid beta 42, pTau181 and TDP-43.
This study shows chronic peripheral inflammation with increased stress after COVID-19 infection. Additionally, differentially expressed nEV neurodegenerative proteins were identified in people recovering from COVID-19 regardless of persistent symptoms.
Source: Tang N, Kido T, Shi J, McCafferty E, Ford JM, Dal Bon K, Pulliam L. Blood Markers Show Neural Consequences of LongCOVID-19. Cells. 2024; 13(6):478. https://doi.org/10.3390/cells13060478 https://www.mdpi.com/2073-4409/13/6/478 (Full text)

Unraveling Links between Chronic Inflammation and Long COVID: Workshop Report

As COVID-19 continues, an increasing number of patients develop long COVID symptoms varying in severity that last for weeks, months, or longer. Symptoms commonly include lingering loss of smell and taste, hearing loss, extreme fatigue, and “brain fog.” Still, persistent cardiovascular and respiratory problems, muscle weakness, and neurologic issues have also been documented. A major problem is the lack of clear guidelines for diagnosing long COVID. Although some studies suggest that long COVID is due to prolonged inflammation after SARS-CoV-2 infection, the underlying mechanisms remain unclear.

The broad range of COVID-19’s bodily effects and responses after initial viral infection are also poorly understood. This workshop brought together multidisciplinary experts to showcase and discuss the latest research on long COVID and chronic inflammation that might be associated with the persistent sequelae following COVID-19 infection.

Source: Pushpa TandonNatalie D. AbramsLeela Rani AvulaDanielle M. CarrickPreethi ChanderRao L. DiviJohanna T. DwyerGallya GannotNataliya GordiyenkoQian LiuKyung MoonMercy PrabhuDasAnju SinghMulualem E. TilahunMerriline M. SatyamitraChiayeng WangRonald WarrenChristina H. Liu; Unraveling Links between Chronic Inflammation and Long COVID: Workshop Report. J Immunol 15 February 2024; 212 (4): 505–512. https://doi.org/10.4049/jimmunol.2300804 https://journals.aai.org/jimmunol/article/212/4/505/266648 (Full text)

Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease

Abstract:

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation.

Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson’s disease, COVID, traumatic brain injury, and Alzheimer’s disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them.

Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical “psychiatric medications” are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.

Source: Khalid A. Hanafy, Tudor G. Jovin. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front. Immunol., 17 January 2024, Sec. Inflammation, Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1332776 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1332776/full (Full text)

Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves

Abstract:

The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves.

The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves.

The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.

Source: Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. Curr Res Microb Sci. 2023 Dec 12;6:100215. doi: 10.1016/j.crmicr.2023.100215. PMID: 38187999; PMCID: PMC10767315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767315/ (Full text)

Increased von Willebrand and Factor VIII plasma levels in gynecologic patients with Post-Acute-COVID-Sequela (PASC)/Long COVID

Highlights:

  • Growing evidence suggests that persistent microvascular inflammation, clumping/clotting of blood cells and thrombotic complications may be key causes of Long COVID.
  • Plasma levels of von Willebrand factor and Factor VIII were uniformly higher in all gynecologic patients with Long COVID vs controls without Long COVID.
  • Persistently elevated levels of Von Willebrand and Factor VIII may represent the results of lingering microvascular damage (i.e., spike-induced endotheliosis).

Abstract:

Up to 30 % of COVID-infected patients may develop post-acute sequelae of COVID-19 (PASC), also known as Long COVID (LC), a syndrome characterized by a variety of debilitating symptoms lasting for more than 3 months after the acute infection. While the pathophysiological mechanisms behind PASC/LC are not completely understood, growing evidence suggests that an important component of this syndrome may be related to persistent microvascular inflammation causing clumping/clotting of red blood cells and platelets and thrombotic complications.

We retrospectively evaluated the plasma levels of von Willebrand factor (VWF), Factor VIII and D-dimer in 10 gynecologic patients (60 % with an endometrial or ovarian cancer diagnosis) affected by PASC/LC vs 5 control patients (60 % harboring endometrial or ovarian tumors). We found elevated VWF and Factor VIII levels in all 10 PASC/LC patients (means of 254 % and 229 %, respectively) vs none of the 5 randomly selected cancer control patients (means of 108 % and 95 %, respectively), p = 0.0046 and p < 0.0001, respectively. In contrast, no significant difference was noted in the levels of D-dimer in PASC/LC.

Importantly, abnormally elevated VWF and Factor VIII levels were found to persist for at least 2 years in patients with Long COVID symptoms. VWF and Factor VIII but not D-dimer levels are significantly elevated in the plasma of PASC/LC cancer patients. Abnormally and persistently elevated VWF and Factor VIII levels may represent the results of persistent microvascular damage (i.e., spike-induced endotheliosis) and may be biomarkers of persistent inflammation in gynecologic patients with PASC/LC.

Source: Stefania Bellone, Eric R. Siegel, David E. Scheim, Alessandro D. Santin.Increased von Willebrand and Factor VIII plasma levels in gynecologic patients with Post-Acute-COVID-Sequela (PASC)/Long COVID. Gynecologic Oncology Reports, Volume 51, February 2024, 101324. https://www.sciencedirect.com/science/article/pii/S2352578924000031 (Full text)

Single-Cell RNA Sequencing Reveals Alterations in Patient Immune Cells with Pulmonary Long COVID-19 Complications

Abstract:

Since the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis.
A 71-year-old COVID-19 patient presenting with persistent viral pneumonia was recruited, and peripheral blood samples were taken at 3 and 2 years post-acute infection onset. Patients and control peripheral blood mononuclear cells (PBMCs) were isolated and single-cell sequenced. Immune cell population identification was carried out using the ScType script.
Three months post-COVID-19 patients’ PBMCs contained a significantly larger immature neutrophil population compared to 2-year and control samples. However, the neutrophil balance shifted towards a more mature profile after 18 months. In addition, a notable increase in the CD8+ NKT-like cells could be observed in the 3-month patient sample as compared to the later one and control. The subsequent change in these cell populations over time may be an indicator of an ongoing failure to clear the SARS-CoV-2 infection and, thus, lead to chronic COVID-19 complications.
Source: Vaivode K, Saksis R, Litvina HD, Niedra H, Spriņģe ML, Krūmiņa U, Kloviņš J, Rovite V. Single-Cell RNA Sequencing Reveals Alterations in Patient Immune Cells with Pulmonary Long COVID-19 Complications. Current Issues in Molecular Biology. 2024; 46(1):461-468. https://doi.org/10.3390/cimb46010029 https://www.mdpi.com/1467-3045/46/1/29 (Full text)