Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients

Abstract:

Background: Lightheadedness, fatigue, weakness, heart palpitations, cognitive dysfunction, muscle pain, and exercise intolerance are some of the symptoms of orthostatic intolerance (OI). There is substantial comorbidity of OI in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome). The 10-minute NASA Lean Test (NLT) is a simple, point-of-care method that can aid ME/CFS diagnosis and guide management and treatment of OI. The objective of this study was to understand the hemodynamic changes that occur in ME/CFS patients during the 10-minute NLT.

Methods: A total of 150 ME/CFS patients and 75 age, gender and race matched healthy controls (HCs) were enrolled. We recruited 75 ME/CFS patients who had been sick for less than 4 years (< 4 ME/CFS) and 75 ME/CFS patients sick for more than 10 years (> 10 ME/CFS). The 10-minute NLT involves measurement of blood pressure and heart rate while resting supine and every minute for 10 min while standing with shoulder-blades on the wall for a relaxed stance. Spontaneously reported symptoms are recorded during the test. ANOVA and regression analysis were used to test for differences and relationships in hemodynamics, symptoms and upright activity between groups.

Results: At least 5 min of the 10-minute NLT were required to detect hemodynamic changes. The < 4 ME/CFS group had significantly higher heart rate and abnormally narrowed pulse pressure compared to > 10 ME/CFS and HCs. The < 4 ME/CFS group experienced significantly more OI symptoms compared to > 10 ME/CFS and HCs. The circulatory decompensation observed in the < 4 ME/CFS group was not related to age or medication use.

Conclusions: Circulatory decompensation characterized by increased heart rate and abnormally narrow pulse pressure was identified in a subgroup of ME/CFS patients who have been sick for < 4 years. This suggests inadequate ventricular filling from low venous pressure. The 10-minute NLT can be used to diagnose and treat the circulatory decompensation in this newly recognized subgroup of ME/CFS patients. The > 10 ME/CFS group had less pronounced hemodynamic changes during the NLT possibly from adaptation and compensation that occurs over time. The 10-minute NLT is a simple and clinically useful point-of-care method that can be used for early diagnosis of ME/CFS and help guide OI treatment.

Source: Lee J, Vernon SD, Jeys P, et al. Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients. J Transl Med. 2020;18(1):314. Published 2020 Aug 15. doi:10.1186/s12967-020-02481-y https://pubmed.ncbi.nlm.nih.gov/32799889/

Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems.

Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30.

Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS.

In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780).

Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.

Source: Milivojevic M, Che X, Bateman L, et al. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One. 2020;15(7):e0236148. Published 2020 Jul 21. doi:10.1371/journal.pone.0236148 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236148 (Full text)

Inclusion of Family Members Without ME/CFS in Research Studies Promotes Discovery of Biomarkers Specific for ME/CFS

Abstract:

Background: The search for a biomarker specific for ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome) has been long, arduous and, to date, unsuccessful. Researchers need to consider their expenditures on each new candidate biomarker. In a previous study of antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer lymphocytes, we found lower ADCC for ME/CFS patients vs. unrelated donors but ruled against low ADCC as a biomarker because of similar ADCC for patients vs. their family members without ME/CFS.

Objective: We applied inclusion of family members without ME/CFS, from families with multiple CFS patients, as a second non-ME/CFS control group in order to re-examine inflammation in ME/CFS.

Method: Total and CD16A-positive ‘non-classical’ anti-inflammatory monocytes were monitored.

Results: Non-classical monocytes were elevated for patients vs. unrelated healthy donors but these differences were insignificant between patients vs. unaffected family members.

Conclusions: Inclusion of family members ruled against biomarker considerations for the monocytes characterized. These pilot findings for the non-classical monocytes are novel in the field of ME/CFS. We recommend that occupational therapists advocate and explain to family members without ME/CFS the need for the family members’ participation as a second set of controls in pilot studies to rapidly eliminate false biomarkers, optimize patient participation, and save researchers’ labor.

Source: Tokunaga K, Sung AP, Tang JJ, et al. Inclusion of family members without ME/CFS in research studies promotes discovery of biomarkers specific for ME/CFS [published online ahead of print, 2020 Jun 16]. Work. 2020;10.3233/WOR-203177. doi:10.3233/WOR-203177 https://pubmed.ncbi.nlm.nih.gov/32568152/

Clinically Accessible Tools for Documenting the Impact of Orthostatic Intolerance on Symptoms and Function in ME/CFS

Abstract:

Background: Clinical observations have indicated that hours of upright activity (HUA) reported by Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients correlated with orthostatic symptoms and impaired physical function. This study examined the relationship between HUA and orthostatic intolerance (OI).

Methods: Twenty-five female ME/CFS subjects and 25 age and race matched female healthy controls (HCs) were enrolled. Subjects reported HUA (defined as hours per day spent with feet on the floor) and completed questionnaires to assess the impact of OI on daily activities and symptoms. ME/CFS patients were categorized into those with <5 HUA and ≥5 HUA and analyzed by employment status. Data analysis used one-way ANOVA.

Results: ME/CFS patients had fewer HUA, worse symptoms and greater interference with daily activities due to OI than HCs. The <5 HUA ME/CFS subjects had more severe OI related symptoms than ≥5 HUA ME/CFS subjects even though OI interfered with daily activities similarly. Only 33% of ME/CFS subjects were employed and all were ≥5 HUA ME/CFS subjects with an average HUA of 8.

Conclusions: ME/CFS subjects experienced more frequent and severe OI symptoms, higher interference with daily activities, and reduced ability to work than HCs. Reported HUA and assessment of OI using standardized instruments may be useful clinical tools for physicians in the diagnosis, treatment and management of ME/CFS patients.

Source: Lee J, Wall P, Kimler C, Bateman L, Vernon SD. Clinically accessible tools for documenting the impact of orthostatic intolerance on symptoms and function in ME/CFS [published online ahead of print, 2020 Jun 16]. Work. 2020;10.3233/WOR-203169. doi:10.3233/WOR-203169 https://pubmed.ncbi.nlm.nih.gov/32568144/

Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder of unknown etiology, and diagnosis of the disease is largely based on clinical symptoms. We hypothesized that immunological disruption is the major driver of this disease and analyzed a large cohort of ME/CFS patient or control blood samples for differences in T cell subset frequencies and functions.

We found that the ratio of CD4+ to CD8+ T cells and the proportion of CD8+ effector memory T cells were increased, whereas NK cells were reduced in ME/CFS patients younger than 50 years old compared to a healthy control group. Remarkably, major differences were observed in Th1, Th2, Th17 and mucosal-associated invariant T (MAIT) T cell subset functions across all ages of patients compared to healthy subjects. While CCR6+ Th17 cells in ME/CFS secreted less IL-17 compared to controls, their overall frequency was higher. Similarly, MAIT cells from patients secreted lower IFNγ, GranzymeA and IL-17 upon activation.

Together, these findings suggest chronic stimulation of these T cell populations in ME/CFS patients. In contrast, the frequency of regulatory T cells (Tregs), which control excessive immune activation, was higher in ME/CFS patients. Finally, using a machine learning algorithm called random forest, we determined that the set of T cell parameters analyzed could identify more than 90% of the subjects in the ME/CFS cohort as patients (93% true positive rate or sensitivity).

In conclusion, these multiple and major perturbations or dysfunctions in T cell subsets in ME/CFS patients suggest potential chronic infections or microbiome dysbiosis. These findings also have implications for development of ME/CFS specific immune biomarkers and reveal potential targets for novel therapeutic interventions.

Source: Ece Karhan, Courtney L Gunter, Vida Ravanmehr, Meghan Horne, Lina Kozhaya, Stephanie Renzullo, Lindsey Placek, Joshy George, Peter N Robinson, Suzanne D Vernon, Lucinda Bateman, Derya Unutmaz. Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
bioRxiv 2019.12.23.887505; doi: https://doi.org/10.1101/2019.12.23.887505 https://www.biorxiv.org/content/10.1101/2019.12.23.887505v1 (Full text available as PDF file)

Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics

Abstract:

The pathogenesis of ME/CFS, a disease characterized by fatigue, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever, irritable bowel syndrome (IBS), and lymphadenopathy, is poorly understood.

We report biomarker discovery and topological analysis of plasma metabolomic, fecal bacterial metagenomic, and clinical data from 50 ME/CFS patients and 50 healthy controls. We confirm reports of altered plasma levels of choline, carnitine and complex lipid metabolites and demonstrate that patients with ME/CFS and IBS have increased plasma levels of ceramide.

Integration of fecal metagenomic and plasma metabolomic data resulted in a stronger predictive model of ME/CFS (cross-validated AUC = 0.836) than either metagenomic (cross-validated AUC = 0.745) or metabolomic (cross-validated AUC = 0.820) analysis alone. Our findings may provide insights into the pathogenesis of ME/CFS and its subtypes and suggest pathways for the development of diagnostic and therapeutic strategies.

Source: Dorottya Nagy-Szakal, Dinesh K. Barupal, Bohyun Lee, Xiaoyu Che, Brent L. Williams, Ellie J. R. Kahn, Joy E. Ukaigwe, Lucinda Bateman, Nancy G. Klimas, Anthony L. Komaroff, Susan Levine, Jose G. Montoya, Daniel L. Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn & W. Ian Lipkin . Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific Reports, volume 8, Article number: 10056 (2018) https://www.nature.com/articles/s41598-018-28477-9 (Full article)

KPAX002 as a treatment for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a prospective, randomized trial

Abstract:

Mitochondrial dysfunction and a hypometabolic state are present in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). KPAX002 consists of low-dose methylphenidate hydrochloride to treat a hypometabolic state combined with key micronutrients intended to broadly support mitochondrial function.

The objective of this study was to evaluate KPAX002 as a treatment for fatigue and concentration disturbance symptoms in ME/CFS subjects. This phase 2 randomized, double-blinded, placebo-controlled trial was conducted at 4 sites in the United States. A total of 135 subjects with ME/CFS were randomly assigned to either KPAX002 (n=67) or placebo (n=68) for 12 weeks of treatment. The primary endpoint was change in the Checklist Individual Strength (CIS) total score from baseline to Week 12. Secondary measurements included visual analog scales for fatigue and concentration disturbance symptoms.

In the intent-to-treat population, the mean reduction in the CIS total score from baseline to week 12 for the KPAX002 and placebo groups was -16.9 (± 23.52) and -13.8 (± 22.15), respectively (95% confidence interval, -11.1, 4.0; P=0.359). On the visual analog scale for fatigue, the mean reduction from baseline to week 12 was -18.2 mm (± 25.05) and -11.1 mm (± 22.08) for the KPAX002 and placebo groups, respectively (95% confidence interval, -11.5, 2.3; P=0.189). The two groups demonstrating the most robust response to KPAX002 were subjects with more severe ME/CFS symptoms at baseline (P=0.086) and subjects suffering from both fatigue and pain (P=0.057). The incidence of adverse events was not statistically different between the two groups.

Treatment with KPAX002 resulted in a reduction in fatigue and concentration disturbance symptoms in multiple analyses. Two key subgroups of patients whose response approached statistical significance were identified.

Source: Jose G Montoya, Jill N Anderson, Danya L Adolphs, Lucinda Bateman, Nancy Klimas, Susan M Levine, Donn W Garvert, Jon D Kaiser. KPAX002 as a treatment for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a prospective, randomized trial. Int J Clin Exp Med 2018;11(3):2890-2900 www.ijcem.com /ISSN:1940-5901/IJCEM0065685 (Full article)

Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome

 

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained persistent fatigue, commonly accompanied by cognitive dysfunction, sleeping disturbances, orthostatic intolerance, fever, lymphadenopathy, and irritable bowel syndrome (IBS). The extent to which the gastrointestinal microbiome and peripheral inflammation are associated with ME/CFS remains unclear. We pursued rigorous clinical characterization, fecal bacterial metagenomics, and plasma immune molecule analyses in 50 ME/CFS patients and 50 healthy controls frequency-matched for age, sex, race/ethnicity, geographic site, and season of sampling.

Results: Topological analysis revealed associations between IBS co-morbidity, body mass index, fecal bacterial composition, and bacterial metabolic pathways but not plasma immune molecules. IBS co-morbidity was the strongest driving factor in the separation of topological networks based on bacterial profiles and metabolic pathways. Predictive selection models based on bacterial profiles supported findings from topological analyses indicating that ME/CFS subgroups, defined by IBS status, could be distinguished from control subjects with high predictive accuracy. Bacterial taxa predictive of ME/CFS patients with IBS were distinct from taxa associated with ME/CFS patients without IBS.

Increased abundance of unclassified Alistipes and decreased Faecalibacterium emerged as the top biomarkers of ME/CFS with IBS; while increased unclassified Bacteroides abundance and decreased Bacteroides vulgatus were the top biomarkers of ME/CFS without IBS. Despite findings of differences in bacterial taxa and metabolic pathways defining ME/CFS subgroups, decreased metabolic pathways associated with unsaturated fatty acid biosynthesis and increased atrazine degradation pathways were independent of IBS co-morbidity. Increased vitamin B6 biosynthesis/salvage and pyrimidine ribonucleoside degradation were the top metabolic pathways in ME/CFS without IBS as well as in the total ME/CFS cohort. In ME/CFS subgroups, symptom severity measures including pain, fatigue, and reduced motivation were correlated with the abundance of distinct bacterial taxa and metabolic pathways.

Conclusions: Independent of IBS, ME/CFS is associated with dysbiosis and distinct bacterial metabolic disturbances that may influence disease severity. However, our findings indicate that dysbiotic features that are uniquely ME/CFS-associated may be masked by disturbances arising from the high prevalence of IBS co-morbidity in ME/CFS. These insights may enable more accurate diagnosis and lead to insights that inform the development of specific therapeutic strategies in ME/CFS subgroups.

 

Source: Dorottya Nagy-Szakal, Brent L. Williams, Nischay Mishra, Xiaoyu Che, Bohyun Lee, Lucinda Bateman, Nancy G. Klimas, Anthony L. Komaroff, Susan Levine, Jose G. Montoya, Daniel L. Peterson, Devi Ramanan, Komal Jain, Meredith L. Eddy, Mady Hornig and W. Ian Lipkin. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome20175:44. DOI: 10.1186/s40168-017-0261-y https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0261-y#MOESM1 (Full article)