Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases

Abstract:

Post-exertional malaise (PEM) is a cardinal predictive symptom in the definition of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). If the cases overexert themselves they have what is termed “payback” resulting in a worsening of symptoms or relapse which can last for days, weeks or even months. The aim was to assess the changes in biochemistry associated with the cases self-reported PEM scores over a 7-day period and the frequency of reporting over a 12-month period.

Forty-seven ME/CFS cases and age/sex-matched controls had a clinical examination, completed questionnaires; were subjected to standard serum biochemistry; had their serum and urine metabolomes analyzed in an observational study. Thirty-five of the 46 ME/CFS cases reported PEM in the last 7-days and these were allocated to the PEM group.

The principal biochemical change related to the 7-day severity of PEM was the fall in the purine metabolite, hypoxanthine. This decrease correlated with alterations in the glucose:lactate ratio highly suggestive of a glycolytic anomaly. Increased excretion of urine metabolites within the 7-day response period indicated a hypermetabolic event was occurring. Increases in urine excretion of methylhistidine (muscle protein degradation), mannitol (intestinal barrier deregulation) and acetate were noted with the hypermetabolic event.

These data indicate hypoacetylation was occurring, which may also be related to deregulation of multiple cytoplasmic enzymes and DNA histone regulation. These findings suggest the primary events associated with PEM were due to hypoacetylation and metabolite loss during the acute PEM response.

Source: Neil R. McGregor, Christopher W. Armstrong , Donald P. Lewis and Paul R. Gooley. Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics 2019, 9(3), 70; https://doi.org/10.3390/diagnostics9030070 https://www.mdpi.com/2075-4418/9/3/70/htm (Full article)

KPAX002 as a treatment for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a prospective, randomized trial

Abstract:

Mitochondrial dysfunction and a hypometabolic state are present in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). KPAX002 consists of low-dose methylphenidate hydrochloride to treat a hypometabolic state combined with key micronutrients intended to broadly support mitochondrial function.

The objective of this study was to evaluate KPAX002 as a treatment for fatigue and concentration disturbance symptoms in ME/CFS subjects. This phase 2 randomized, double-blinded, placebo-controlled trial was conducted at 4 sites in the United States. A total of 135 subjects with ME/CFS were randomly assigned to either KPAX002 (n=67) or placebo (n=68) for 12 weeks of treatment. The primary endpoint was change in the Checklist Individual Strength (CIS) total score from baseline to Week 12. Secondary measurements included visual analog scales for fatigue and concentration disturbance symptoms.

In the intent-to-treat population, the mean reduction in the CIS total score from baseline to week 12 for the KPAX002 and placebo groups was -16.9 (± 23.52) and -13.8 (± 22.15), respectively (95% confidence interval, -11.1, 4.0; P=0.359). On the visual analog scale for fatigue, the mean reduction from baseline to week 12 was -18.2 mm (± 25.05) and -11.1 mm (± 22.08) for the KPAX002 and placebo groups, respectively (95% confidence interval, -11.5, 2.3; P=0.189). The two groups demonstrating the most robust response to KPAX002 were subjects with more severe ME/CFS symptoms at baseline (P=0.086) and subjects suffering from both fatigue and pain (P=0.057). The incidence of adverse events was not statistically different between the two groups.

Treatment with KPAX002 resulted in a reduction in fatigue and concentration disturbance symptoms in multiple analyses. Two key subgroups of patients whose response approached statistical significance were identified.

Source: Jose G Montoya, Jill N Anderson, Danya L Adolphs, Lucinda Bateman, Nancy Klimas, Susan M Levine, Donn W Garvert, Jon D Kaiser. KPAX002 as a treatment for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a prospective, randomized trial. Int J Clin Exp Med 2018;11(3):2890-2900 www.ijcem.com /ISSN:1940-5901/IJCEM0065685 (Full article)

Higher prevalence of ‘low T3 syndrome’ in patients with chronic fatigue syndrome: A case-control study

Abstract:

Chronic fatigue syndrome (CFS) is a heterogeneous disease with unknown cause(s). CFS symptoms resemble a hypothyroid state, possibly secondary to chronic (low-grade) (metabolic) inflammation. We studied 98 CFS patients (21-69 years, 21 males) and 99 age- and sex-matched controls (19-65 years, 23 males). We measured parameters of thyroid function, (metabolic) inflammation, gut wall integrity and nutrients influencing thyroid function and/or inflammation.

Most remarkably, CFS patients exhibited similar TSH, but lower FT3 (difference of medians 0.1%), TT4 (11.9%), TT3 (12.5%), %TT3 (4.7%), SPINA-GD (14.4%), SPINA-GT (14.9%), 24-hour urinary iodine (27.6%) and higher %rT3 (13.3%). FT3 below the reference range, consistent with the ‘low T3 syndrome’, was found in 16/98 CFS patients vs. 7/99 controls (OR 2.56; 95% CI=1.00 – 6.54). Most observations persisted in two sensitivity analyses with more stringent cut-off values for BMI, hsCRP and WBC.

We found possible evidence of (chronic) low-grade metabolic inflammation (ferritin and HDL-C). FT3, TT3, TT4 and rT3 correlated positively with hsCRP in CFS patients and all subjects. TT3 and TT4 were positively related to hsCRP in controls. Low circulating T3 and the apparent shift from T3 to rT3 may reflect more severely depressed tissue T3 levels.

The present findings might be in line with recent metabolomic studies pointing at a hypometabolic state. They resemble a mild form of ‘non thyroidal illness syndrome’ and ‘low T3 syndrome’ experienced by a subgroup of hypothyroid patients receiving T4 monotherapy. Our study needs confirmation and extension by others. If confirmed, trials with e.g. T3 and iodide supplements might be indicated.

Source: Begoña Ruiz-Núñez, Rabab Tarasse, Emar Vogelaar, Janneke Dijck-Brouwerand Frits Muskiet. Higher prevalence of ‘low T3 syndrome’ in patients with chronic fatigue syndrome: A case-control study. Front. Endocrinol. | doi: 10.3389/fendo.2018.00097 https://www.frontiersin.org/articles/10.3389/fendo.2018.00097/abstract

Characteristic chemical signature for chronic fatigue syndrome identified

Chronic fatigue syndrome (CFS) is a mysterious and maddening condition, with no cure or known cause. But researchers at the University of California San Diego School of Medicine, using a variety of techniques to identify and assess targeted metabolites in blood plasma, have identified a characteristic chemical signature for the debilitating ailment and an unexpected underlying biology: It is similar to the state of dauer, and other hypometabolic syndromes like caloric restriction, diapause and hibernation.

Dauer is the German word for persistence or long-lived. It is a type of stasis in the development in some invertebrates that is prompted by harsh environmental conditions. The findings are published online in the August 29 issue of PNAS.

“CFS is a very challenging disease,” said first author Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology and director of the Mitochondrial and Metabolic Disease Center at UC San Diego School of Medicine. “It affects multiple systems of the body. Symptoms vary and are common to many other diseases. There is no diagnostic laboratory test. Patients may spend tens of thousands of dollars and years trying to get a correct diagnosis.”

As many as 2.5 million Americans are believed to have CFS. It most often afflicts women in their 30s to 50s, though both genders and all ages can be affected. The primary symptom is severe fatigue lasting at least six months, with corollary symptoms ranging from muscle pain and headaches to sleep and memory problems.

Naviaux and colleagues studied 84 subjects: 45 men and women who met the diagnostic criteria for CFS and 39 matched controls. The researchers targeted 612 metabolites (substances produced by the processes of metabolism) from 63 biochemical pathways in blood plasma. They found that individuals with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites measured were decreased, consistent with hypometabolic syndrome or reduced metabolism. The diagnostic accuracy rate exceeded 90 percent.

“Despite the heterogeneity of CFS, the diversity of factors that lead to this condition, our findings show that the cellular metabolic response is the same in patients,” said Naviaux. “And interestingly, it’s chemically similar to the dauer state you see in some organisms, which kicks in when environmental stresses trigger a slow-down in metabolism to permit survival under conditions that might otherwise cause cell death. In CFS, this slow-down comes at the cost of long-term pain and disability.”

Naviaux said the findings show that CFS possesses an objectively identifiable chemical signature in both men and women and that targeted metabolomics, which provide direct small molecule information, can provide actionable treatment information. Only 25 percent of the metabolite disturbances found in each person were needed for the diagnosis of CFS. Roughly 75 percent of abnormalities were unique to each individual, which Naviaux said is useful in guiding personalized treatment.

“This work opens a fresh path to both understanding the biology of CFS and, more importantly to patients, a robust, rational way to develop new therapeutics for a disease sorely in need of them.”

The study authors noted additional research using larger groups of participants from diverse geographical areas is needed to validate both the universality and specificity of the findings.

 

Journal Reference: Robert K. Naviaux, Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Lin Wang, Asha Baxter, Neil Nathan, Wayne Anderson, Eric Gordon. Metabolic features of chronic fatigue syndrome. Proceedings of the National Academy of Sciences, 2016; 201607571 DOI: 10.1073/pnas.1607571113

 

Source: University of California – San Diego. “Characteristic chemical signature for chronic fatigue syndrome identified: Discovery, along with revealed underlying biology, could lead to faster, more accurate diagnoses and more effective, personalized therapies.” ScienceDaily. ScienceDaily, 29 August 2016. https://www.sciencedaily.com/releases/2016/08/160829163253.htm