Book Review: Toxic by Dr. Neil Nathan Is a Must-Read!

This superb book by Dr. Neil Nathan is a must-read for anyone suffering from mold toxicity, Lyme disease, multiple chemical sensitivities, chronic environmental illness, fibromyalgia, or myalgic encephalomyelitis/chronic fatigue syndrome. These difficult-to-treat diseases, which are often ignored or dismissed by mainstream medical practitioners, present a challenge to any physician, but it is a challenge that Dr. Nathan meets with in-depth knowledge, compassion, and common sense. In addition to the above diseases, Dr. Nathan also discusses the important role of mast cell activation, porphyria, and carbon monoxide, the three “elephants in the room.” His discussion of mast cell activation syndromes, which he finds in half of his patients suffering from unusual sensitivities, is particularly enlightening. He not only presents symptoms and signs to look for, but how MCAS is diagnosed and treated.

Dr. Nathan  brings his decades of experience to bear by explaining how toxins can interact to produce a multiplicity of disease states simultaneously. His clear and concise explanation for how environmental diseases become chronic is the best I have ever read. In some individuals, toxins are not eliminated through normal channels. Instead, the toxins, once they are attached to bile, are recycled, sent back to the liver when the bile is reabsorbed in the large intestine. This would account for why people with exposure to mold, for example, do not recover after a single course of treatment.

People with any of the illnesses covered in this book will be delighted to find detailed descriptions of how Dr. Nathan and other experts in this field treat these diseases. Not only does Dr. Nathan offer a treatment blueprint for each disease, he provides many additional resources, as well as direct commentary by expert physicians. His bottom line is that it is not enough to kill infections, or rely on strict avoidance. Toxins must be safely removed. The underlying theme, namely chronic inflammation, is addressed in this context. Dr. Nathan’s chapters on” rebooting” as a model for treatment and healing are a goldmine for people seeking an effective long-term treatment strategy.

One of the most valuable takeaways from this book is Dr. Nathan’s sensible approach. Dr. Nathan takes “First, do not harm” seriously. Patients with environmental illnesses can be exquisitely sensitive, which means treatments must be started at miniscule doses, and proceed slowly. If a patient feels worse, stop. Why insist that a patient “push through” if it only leads to increased symptoms? This is so sensible, and so obvious, I am left wondering why more physicians don’t adopt a more gradual approach to treating environmental diseases.

Dr. Nathan’s conversational writing style makes this book a pleasure to read, despite the complexity of the topic. He increases the accessibility to lay readers by including helpful diagrams and graphics that convey information visually, as well as side notes that neatly summarize points. This is a book to keep by your bedside. You will want to refer to it often.

Available on Amazon and Barnes&Noble.

Characteristic chemical signature for chronic fatigue syndrome identified

Chronic fatigue syndrome (CFS) is a mysterious and maddening condition, with no cure or known cause. But researchers at the University of California San Diego School of Medicine, using a variety of techniques to identify and assess targeted metabolites in blood plasma, have identified a characteristic chemical signature for the debilitating ailment and an unexpected underlying biology: It is similar to the state of dauer, and other hypometabolic syndromes like caloric restriction, diapause and hibernation.

Dauer is the German word for persistence or long-lived. It is a type of stasis in the development in some invertebrates that is prompted by harsh environmental conditions. The findings are published online in the August 29 issue of PNAS.

“CFS is a very challenging disease,” said first author Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology and director of the Mitochondrial and Metabolic Disease Center at UC San Diego School of Medicine. “It affects multiple systems of the body. Symptoms vary and are common to many other diseases. There is no diagnostic laboratory test. Patients may spend tens of thousands of dollars and years trying to get a correct diagnosis.”

As many as 2.5 million Americans are believed to have CFS. It most often afflicts women in their 30s to 50s, though both genders and all ages can be affected. The primary symptom is severe fatigue lasting at least six months, with corollary symptoms ranging from muscle pain and headaches to sleep and memory problems.

Naviaux and colleagues studied 84 subjects: 45 men and women who met the diagnostic criteria for CFS and 39 matched controls. The researchers targeted 612 metabolites (substances produced by the processes of metabolism) from 63 biochemical pathways in blood plasma. They found that individuals with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites measured were decreased, consistent with hypometabolic syndrome or reduced metabolism. The diagnostic accuracy rate exceeded 90 percent.

“Despite the heterogeneity of CFS, the diversity of factors that lead to this condition, our findings show that the cellular metabolic response is the same in patients,” said Naviaux. “And interestingly, it’s chemically similar to the dauer state you see in some organisms, which kicks in when environmental stresses trigger a slow-down in metabolism to permit survival under conditions that might otherwise cause cell death. In CFS, this slow-down comes at the cost of long-term pain and disability.”

Naviaux said the findings show that CFS possesses an objectively identifiable chemical signature in both men and women and that targeted metabolomics, which provide direct small molecule information, can provide actionable treatment information. Only 25 percent of the metabolite disturbances found in each person were needed for the diagnosis of CFS. Roughly 75 percent of abnormalities were unique to each individual, which Naviaux said is useful in guiding personalized treatment.

“This work opens a fresh path to both understanding the biology of CFS and, more importantly to patients, a robust, rational way to develop new therapeutics for a disease sorely in need of them.”

The study authors noted additional research using larger groups of participants from diverse geographical areas is needed to validate both the universality and specificity of the findings.

 

Journal Reference: Robert K. Naviaux, Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Lin Wang, Asha Baxter, Neil Nathan, Wayne Anderson, Eric Gordon. Metabolic features of chronic fatigue syndrome. Proceedings of the National Academy of Sciences, 2016; 201607571 DOI: 10.1073/pnas.1607571113

 

Source: University of California – San Diego. “Characteristic chemical signature for chronic fatigue syndrome identified: Discovery, along with revealed underlying biology, could lead to faster, more accurate diagnoses and more effective, personalized therapies.” ScienceDaily. ScienceDaily, 29 August 2016. https://www.sciencedaily.com/releases/2016/08/160829163253.htm

 

Metabolic features of chronic fatigue syndrome

Abstract:

More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS.

We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females.

We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism.

Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer.

 

Source: Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5472-80. doi: 10.1073/pnas.1607571113. Epub 2016 Aug 29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027464/ (Full article)

Comment

G L Francis 2016 Sep 19 04:58 a.m.

I have read your publication in PNAS titled ‘Metabolic features of chronic fatigue syndrome’ with much interest, this significant contribution has at last provided a definitive publication of a realistic evidence based diagnostic test based on a panel of blood metabolites – this could provide a more robust diagnostic base for future rational treatment studies in ‘CFS’.

Athough there are many more complex and critical questions to be asked, I will keep mine simple. I took particular note of the authors comments “When MTHFD2L is turned down in differentiated cells, less mitochondrial formate is produced and one-carbon units are directed through Methylene-THF toward increased SAM synthesis and increased DNA methylation” (from Figure S6. Mitochondrial Control of Redox, NADPH, Nucleotide, and Methylation Pathways legend). I recently read the paper, ‘Association of Vitamin B12 Deficiency with Homozygosity of the TT MTHFR C677T Genotype, Hyperhomocysteinemia, and Endothelial Cell Dysfunction’ Shiran A et al. IMAJ 2015; 17: 288–292, and wondered whether the gene variations in the individuals described within that publication, could be over represented in your subjects, mind you the size of your study population probably answers my own question; and no doubt many mechanisms that lead to a perturbation of this pathway exist, of which this could conceivable be just one of many, even if a minor contributor. Moreover, there does seem to be a difference between the two papers in terms of the particular pertubations on incidence of cardiovascular disease and outcomes?