Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment (“brain fog”), orthostatic intolerance (OI) and other symptoms (“Long COVID”). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing.

Methods: We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app.

Participants: People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT.

Results: The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01).

Conclusions: A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.

Source: Vernon SD, Funk S, Bateman L, Stoddard GJ, Hammer S, Sullivan K, Bell J, Abbaszadeh S, Lipkin WI, Komaroff AL. Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne). 2022 Jun 23;9:917019. doi: 10.3389/fmed.2022.917019. PMID: 35847821; PMCID: PMC9285104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285104/ (Full text)

Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease.

Methods: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls.

Results: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873).

Conclusion: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS.

One sentence summary: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

Source: Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. medRxiv [Preprint]. 2022 Jan 11:2021.06.14.21258895. doi: 10.1101/2021.06.14.21258895. PMID: 35043127; PMCID: PMC8764736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764736/ (Full text)

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)

Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, multi-system, debilitating disability manifesting as severe fatigue and post-exertional malaise. The chronic dysfunctions in ME/CFS are increasingly recognized as significant health factors with potential parallels with “long COVID”. However, the etiology of ME/CFS remains elusive with limited high-resolution human studies. In addition, reliable biomarker-based diagnostics have not been well-established, but may assist in disease classification, particularly during different temporal phases of the disease. Here, we performed deep multi-omics (shotgun metagenomics of gut microbiota and plasma metabolomics) and clinical phenotyping of healthy controls (n=79) vs. two cohorts of ME/CFS patients: those with short-term disease (<4 years, n=75), and patients with long-term disease (>10y, n=79).

Overall, ME/CFS was characterized by reduced gut microbiome diversity and richness with high heterogeneity, and depletion of sphingomyelins and short-chain fatty acids in the plasma. We found significant differences when stratifying by cohort; short-term ME/CFS was associated with more microbial dysbiosis, but long-term ME/CFS was associated with markedly more severe phenotypic and metabolic abnormalities. We identified a reduction in the gene-coding capacity (and relative abundance of butyrate producers) of microbial butyrate biosynthesis together with a reduction in the plasma concentration of butyrate, especially in the short-term group. Global co-association and detailed gene pathway correlation analyses linking the microbiome and metabolome identified additional potential biological mechanisms underlying host-microbiome interactions in ME/CFS, including bile acids and benzoate pathways.

Finally, we built multiple state-of-the-art classifiers to identify microbes, microbial gene pathways, metabolites, and clinical features that individually or together, were most able to differentiate short or long-term MECFS, or MECFS vs. healthy controls. Taken together, our study presents the highest resolution, multi-cohort and multi-omics analysis to date, providing an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). bioRxiv 2021.10.27.466150; doi: https://doi.org/10.1101/2021.10.27.466150 https://www.biorxiv.org/content/10.1101/2021.10.27.466150v1 (Full study available for download)

Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2.

Materials and Methods: This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms.

Results: ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by −7.5 ± 1.9 (or −25.7%, p = 0.009), with all monitored symptoms improving.

Conclusion: The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03613129.

Source: Gerard Pereira, Hunter Gillies, Sanjay Chanda, Michael Corbett, Suzanne D. Vernon, Tina Milani and Lucinda Bateman. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Syst. Neurosci., 01 September 2021. https://doi.org/10.3389/fnsys.2021.69824 https://www.frontiersin.org/articles/10.3389/fnsys.2021.698240/full (Full text)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of diagnosis and management

Abstract:

Despite myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affecting millions of people worldwide, many clinicians lack the knowledge to appropriately diagnose or manage ME/CFS. Unfortunately, clinical guidance has been scarce, obsolete, or potentially harmful. Consequently, up to 91% of patients in the United States remain undiagnosed, and those diagnosed often receive inappropriate treatment. These problems are of increasing importance because after acute COVID-19, a significant percentage of people remain ill for many months with an illness similar to ME/CFS.
In 2015, the US National Academy of Medicine published new evidence-based clinical diagnostic criteria that have been adopted by the US Centers for Disease Control and Prevention. Furthermore, the United States and other governments as well as major health care organizations have recently withdrawn graded exercise and cognitive-behavioral therapy as the treatment of choice for patients with ME/CFS. Recently, 21 clinicians specializing in ME/CFS convened to discuss best clinical practices for adults affected by ME/CFS.
This article summarizes their top recommendations for generalist and specialist health care providers based on recent scientific progress and decades of clinical experience. There are many steps that clinicians can take to improve the health, function, and quality of life of those with ME/CFS, including those in whom ME/CFS develops after COVID-19. Patients with a lingering illness that follows acute COVID-19 who do not fully meet criteria for ME/CFS may also benefit from these approaches.
Source: Lucinda Bateman, MD, Alison C. Bested, MD, Hector F. Bonilla, MD, Ilene S. Ruhoy, MD, PhD, Maria A. Vera-Nunez, MD, MSBI, Brayden P. Yellman, MD et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of Diagnosis and Management. Mayo Clinic Proceedings. Open Access. Published:August 25, 2021DOI:https://doi.org/10.1016/j.mayocp.2021.07.004 https://www.mayoclinicproceedings.org/article/S0025-6196(21)00513-9/fulltext (Full text)

Dissecting the nature of post-exertional malaise

Abstract:

Background: Post-exertional malaise (PEM) is a defining characteristic of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) but there is insufficient research dissecting the nature of PEM from the patients’ perspective.

Methods: A PEM questionnaire administered to 150 ME/CFS patients. It included open-ended questions about triggers, experiences, recovery, and prevention. Responses were re-coded into concise, representative topics. Chi-Square tests of independence were then used to test for differences and relationships between duration of ME/CFS illness (<4 years and >10 years), PEM onset and duration, and gender with PEM trigger, experience, recovery, and prevention.

Results: Physical exertion was the most common trigger of PEM. The onset of PEM occurred within minutes after physical exertion compared to within hours after cognitive exertion (<0.05). ME/CFS patients sick for <4 years reported stress as a trigger significantly more often than those sick for >10 years (<0.001). ME/CFS patients sick for <4 years experienced more orthostatic symptoms during PEM than those sick for >10 years. ME/CFS patients sick for >10 years reported using medications to recover from PEM significantly more that those sick for <4 years (<0.01). Pacing and avoiding specific triggers were common approaches to prevent PEM.

Conclusions: There are differences in PEM triggers, experiences and recovery based on duration of illness. Asking about PEM is important for diagnosis and to understand how to manage PEM. Given that PEM occurs more quickly after physical versus cognitive exertion, these results should instigate research on the relationship of upright posture, hypoperfusion and PEM.

Source: Megan Hartle, Lucinda Bateman & Suzanne D. Vernon (2021) Dissecting the nature of post-exertional malaise, Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2021.1905415 https://www.tandfonline.com/doi/full/10.1080/21641846.2021.1905415 (Full text)

Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?

Introduction:

“Recovering” from COVID-19 does not guarantee a return to a person’s usual state of health. For one thing, some people with multi-system injury—particularly to the brain, heart and kidneys—may develop permanent dysfunction of those organs.

In addition, a more subtle form of chronic illness may develop. For some people with COVID-19, even those who are only mildly affected at first, the ensuing weeks and months of “recovery” bring a surprise and a betrayal: they do not return to full health. Although nucleic acid tests no longer detect the virus, people still suffer from ongoing symptoms. They call themselves “long haulers,” and the condition is being called “long COVID.”

Source: Komaroff AL, Bateman L. Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Front Med (Lausanne). 2021 Jan 18;7:606824. doi: 10.3389/fmed.2020.606824. PMID: 33537329; PMCID: PMC7848220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848220/ (Full text)

Will COVID-19 Lead to ME/CFS?

INTRODUCTION:

“Recovering” from COVID-19 does not guarantee a return to a person’s usual state of health. For one thing, some people with multi-system injury—particularly to the brain, heart and kidneys—may develop permanent dysfunction of those organs.
In addition, a more subtle form of chronic illness may develop. For some people with COVID-19, even those who are mildly affected at first, the ensuing weeks and months of “recovery” bring a surprise and a betrayal: they do not return to full health. Although nucleic acid tests no longer detect the virus, people still suffer from ongoing symptoms. They call themselves “long haulers”, and the condition is being called “long COVID”.

Source: Anthony L. Komaroff and Lucinda Bateman. Will COVID-19 Lead to ME/CFS? Front. Med. | doi: 10.3389/fmed.2020.606824 https://www.frontiersin.org/articles/10.3389/fmed.2020.606824/full (Full text)

Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients

Abstract:

Background: Lightheadedness, fatigue, weakness, heart palpitations, cognitive dysfunction, muscle pain, and exercise intolerance are some of the symptoms of orthostatic intolerance (OI). There is substantial comorbidity of OI in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome). The 10-minute NASA Lean Test (NLT) is a simple, point-of-care method that can aid ME/CFS diagnosis and guide management and treatment of OI. The objective of this study was to understand the hemodynamic changes that occur in ME/CFS patients during the 10-minute NLT.

Methods: A total of 150 ME/CFS patients and 75 age, gender and race matched healthy controls (HCs) were enrolled. We recruited 75 ME/CFS patients who had been sick for less than 4 years (< 4 ME/CFS) and 75 ME/CFS patients sick for more than 10 years (> 10 ME/CFS). The 10-minute NLT involves measurement of blood pressure and heart rate while resting supine and every minute for 10 min while standing with shoulder-blades on the wall for a relaxed stance. Spontaneously reported symptoms are recorded during the test. ANOVA and regression analysis were used to test for differences and relationships in hemodynamics, symptoms and upright activity between groups.

Results: At least 5 min of the 10-minute NLT were required to detect hemodynamic changes. The < 4 ME/CFS group had significantly higher heart rate and abnormally narrowed pulse pressure compared to > 10 ME/CFS and HCs. The < 4 ME/CFS group experienced significantly more OI symptoms compared to > 10 ME/CFS and HCs. The circulatory decompensation observed in the < 4 ME/CFS group was not related to age or medication use.

Conclusions: Circulatory decompensation characterized by increased heart rate and abnormally narrow pulse pressure was identified in a subgroup of ME/CFS patients who have been sick for < 4 years. This suggests inadequate ventricular filling from low venous pressure. The 10-minute NLT can be used to diagnose and treat the circulatory decompensation in this newly recognized subgroup of ME/CFS patients. The > 10 ME/CFS group had less pronounced hemodynamic changes during the NLT possibly from adaptation and compensation that occurs over time. The 10-minute NLT is a simple and clinically useful point-of-care method that can be used for early diagnosis of ME/CFS and help guide OI treatment.

Source: Lee J, Vernon SD, Jeys P, et al. Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients. J Transl Med. 2020;18(1):314. Published 2020 Aug 15. doi:10.1186/s12967-020-02481-y https://pubmed.ncbi.nlm.nih.gov/32799889/