Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis

Abstract:

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a debilitating, multisystem disease of unknown mechanism, with a currently ongoing search for its endocrine mediators. Circulating microRNAs (miRNA) are a promising candidate for such a mediator and have been reported as significantly different in the patient population versus healthy controls by multiple studies. None of these studies, however, agree with each other on which specific miRNA are under- or over-expressed.

This discrepancy is the subject of the computational study presented here, in which a deep dive into the predicted gene targets and their functional interactions is conducted, revealing that the aberrant circulating miRNAs in ME/CFS, although different between patients, seem to mainly target the same specific set of genes (p ≈ 0.0018), which are very functionally related to each other (p ≲ 0.0001).

Further analysis of these functional relations, based on directional pathway information, points to impairments in exercise hyperemia, angiogenic adaptations to hypoxia, antioxidant defenses, and TGF-β signaling, as well as a shift towards mitochondrial fission, corroborating and explaining previous direct observations in ME/CFS. Many transcription factors and epigenetic modulators are implicated as well, with currently uncertain downstream combinatory effects.

As the results show significant similarity to previous research on latent herpesvirus involvement in ME/CFS, the possibility of a herpesvirus origin of these miRNA changes is also explored through further computational analysis and literature review, showing that 8 out of the 10 most central miRNAs analyzed are known to be upregulated by various herpesviruses. In total, the results establish an appreciable and possibly central role for circulating microRNAs in ME/CFS etiology that merits further experimental research.

Source: Kaczmarek MP. Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis. PLoS One. 2023 Dec 29;18(12):e0296060. doi: 10.1371/journal.pone.0296060. PMID: 38157384; PMCID: PMC10756525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756525/ (Full text)

Increased risk of chronic fatigue syndrome following infection: a 17-year population-based cohort study

Abstract:

Background: Previous serological studies have indicated an association between viruses and atypical pathogens and Chronic Fatigue Syndrome (CFS). This study aims to investigate the correlation between infections from common pathogens, including typical bacteria, and the subsequent risk of developing CFS. The analysis is based on data from Taiwan’s National Health Insurance Research Database.

Methods: From 2000 to 2017, we included a total of 395,811 cases aged 20 years or older newly diagnosed with infection. The cases were matched 1:1 with controls using a propensity score and were followed up until diagnoses of CFS were made.

Results: The Cox proportional hazards regression analysis was used to estimate the relationship between infection and the subsequent risk of CFS. The incidence density rates among non-infection and infection population were 3.67 and 5.40 per 1000 person-years, respectively (adjusted hazard ratio [HR] = 1.5, with a 95% confidence interval [CI] 1.47-1.54). Patients infected with Varicella-zoster virus, Mycobacterium tuberculosis, Escherichia coli, Candida, Salmonella, Staphylococcus aureus and influenza virus had a significantly higher risk of CFS than those without these pathogens (p < 0.05). Patients taking doxycycline, azithromycin, moxifloxacin, levofloxacin, or ciprofloxacin had a significantly lower risk of CFS than patients in the corresponding control group (p < 0.05).

Conclusion: Our population-based retrospective cohort study found that infection with common pathogens, including bacteria, viruses, is associated with an increased risk of developing CFS.

Source: Chang H, Kuo CF, Yu TS, Ke LY, Hung CL, Tsai SY. Increased risk of chronic fatigue syndrome following infection: a 17-year population-based cohort study. J Transl Med. 2023 Nov 11;21(1):804. doi: 10.1186/s12967-023-04636-z. PMID: 37951920. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04636-z (Full text)

Evaluation of viral infection as an etiology of ME/CFS: a systematic review and meta-analysis

Abstract:

Background: Myalgic encephalitis/chronic fatigue syndrome (ME/CFS) is a long-term disabling illness without a medically explained cause. Recently during COVID-19 pandemic, many studies have confirmed the symptoms similar to ME/CFS in the recovered individuals. To investigate the virus-related etiopathogenesis of ME/CFS, we conducted a systematic assessment of viral infection frequency in ME/CFS patients.

Methods: We conducted a comprehensive search of PubMed and the Cochrane Library from their inception through December 31, 2022, using selection criteria of viral infection prevalence in ME/CFS patients and controls. Subsequently, we performed a meta-analysis to assess the extent of viral infections’ contribution to ME/CFS by comparing the odds ratio between ME/CFS patients and controls (healthy and/or diseased).

Results: Finally, 64 studies met our eligibility criteria regarding 18 species of viruses, including a total of 4971 ME/CFS patients and 9221 control subjects. The participants included healthy subjects and individuals with one of 10 diseases, such as multiple sclerosis or fibromyalgia. Two DNA viruses (human herpes virus (HHV)-7 and parvovirus B19, including their co-infection) and 3 RNA viruses (borna disease virus (BDV), enterovirus and coxsackie B virus) showed odds ratios greater than 2.0 compared with healthy and/or diseased subjects. Specifically, BDV exceeded the cutoff with an odds ratio of ≥ 3.47 (indicating a “moderate association” by Cohen’s d test) compared to both healthy and diseased controls.

Conclusion: This study comprehensively evaluated the risk of viral infections associated with ME/CFS, and identified BDV. These results provide valuable reference data for future studies investigating the role of viruses in the causation of ME/CFS.

Source: Hwang, JH., Lee, JS., Oh, HM. et al. Evaluation of viral infection as an etiology of ME/CFS: a systematic review and meta-analysis. J Transl Med 21, 763 (2023). https://doi.org/10.1186/s12967-023-04635-0 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04635-0 (Full text)

Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of unexplained severe fatigue

Abstract

Background: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified.

Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient population likely encompasses multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment.

Methods: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences.

Results: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory neurosteroids and impaired progesterone metabolism.

Conclusions: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a specific disease aetiology that may be an underlying cause of complex chronic fatigue and possibly other conditions too. It reveals biomarkers that could be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.

Source: Julia Oakley, Martin Hill, Adam Giess, Mélanie Tanguy, Greg Elgar. Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of unexplained severe fatigue. ResearchSquare [Preprint] https://www.researchsquare.com/article/rs-3218228/v2 (Full text)

The viral origin of myalgic encephalomyelitis/chronic fatigue syndrome

ME/CFS is a disabling and often severe disease, so-far incurable, that has long been associated with discrete outbreaks and sporadic incidents of viral-like illness. First, a word about the controversial name. The designation “Myalgic Encephalomyelitis” (abbreviated ME) originated following an outbreak at London’s Royal Free Hospital in 1955. More than 200 members of the hospital staff became disabled [1]. Melvin Ramsay, MD, eventually published important case descriptions in Lancet [2]. He coined “ME” based on predominant symptoms of muscle pain (myalgia) and effects on the brain (encephalo), spinal cord (myel), and inflammation (itis). For 32 years, “ME” was deemed acceptable until, in 1987, the Centers for Disease Control (CDC) convened an extramural committee to change the name. CDC did so in response to a series of outbreaks of a similar, if not identical, illness in the United States, introducing “chronic fatigue syndrome” in 1988 [3].

Because the CDC name trivializes the serious nature of the disease, the patient community and many medical professionals prefer ME, which continues to be widely used in the United Kingdom and Europe. In 2015, a US Institute of Medicine (IOM) committee recommended yet another name, Systemic Exertion Intolerance Disease [4], which has been largely ignored. Should inflammation of the brain and spinal cord be definitively shown with modern methods, the name Myalgic Encephalomyelitis will finally be vindicated. The compromise name ME/CFS is now used most frequently and will be used here despite its faults.

Source: Hanson MR (2023) The viral origin of myalgic encephalomyelitis/chronic fatigue syndrome. PLoS Pathog 19(8): e1011523. https://doi.org/10.1371/journal.ppat.1011523 https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1011523 (Full text)

 

Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Elevation of FABP2, a marker of intestinal cell damage in ME/CFS.
  • Absence of optimal acute-phase LBP and sCD14 anti-microbial responses in ME/CFS.
  • Compensatory but inadequate B cell response to microbial translocation in ME/CFS.
  • Enhanced IL-10 regulatory response may drive the observed immunosuppression.
  • Glucose and citrate metabolic dysfunction in ME/CFS may link the IL-10 activation and suppressed anti-microbial responses.

Abstract:

The etiology and mechanism of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are poorly understood and no biomarkers have been established. Specifically, the relationship between the immunologic, metabolic, and gastrointestinal abnormalities associated with ME/CFS and their relevance to established symptoms of the condition remain unclear.

Relying on data from two independent cohorts of ME/CFS and control study participants, one at rest and one undergoing an exercise challenge, we identify a state of suppressed acute-phase innate immune response to microbial translocation in conjunction with a compromised gut epithelium. This immunosuppression, along with observed enhancement of compensatory antibody responses to counter the microbial translocation, was associated with and may be mediated by alterations in glucose and citrate metabolism and an IL-10 immunoregulatory response. Our findings provide novel insights into mechanistic pathways, biomarkers, and potential therapeutic targets in ME/CFS, including in the context of exertion, with relevance to both intestinal and extra-intestinal symptoms.

Source: Melanie Uhde, Alyssa C. Indart, Peter H.R. Green, Robert H. Yolken, Dane B. Cook, Sanjay K. Shukla, Suzanne D. Vernon, Armin Alaedini.
Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome. Brain, Behavior, & Immunity – Health, 2023, 100627. ISSN 2666-3546, https://doi.org/10.1016/j.bbih.2023.100627.
https://www.sciencedirect.com/science/article/pii/S2666354623000418 (Full text)

Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance

Abstract:

Myalgic encephalomyelitis, ME, previously also known as chronic fatigue syndrome (CFS) is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection.

The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation.

Here we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation (INMEST) targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME-patients and correlating with a ∼30% reduction in overall symptom scores after eight weeks of treatment.

By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation.

The mechanisms of symptom relief remains to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.

Source: Lucie Rodriguez, Christian Pou, Tadepally Lakshmikanth, Jingdian Zhang, Constantin Habimana Mugabo, Jun Wang, Jaromir Mikes, Axel Olin, Yang Chen, Joanna Rorbach, Jan-Erik Juto, Tie Qiang Li, Per Julin, Petter Brodin, Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance, Oxford Open Immunology, 2023;, iqad003, https://doi.org/10.1093/oxfimm/iqad003 (Full text available as PDF file)

A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome

Abstract:

Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE).
Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Source: Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. International Journal of Molecular Sciences. 2023; 24(7):6022. https://doi.org/10.3390/ijms24076022 https://www.mdpi.com/1422-0067/24/7/6022 (Full text)

A neuroinflammatory paradigm can explain Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome and Post-COVID-19 Fatigue Syndrome

Abstract

This thesis illustrates the development of a neuroinflammatory paradigm for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), applicable to Long-COVID related “Post-COVID-19 Fatigue Syndrome” (PCFS).

The brain being devoid of nociceptors, in combination with neuroimaging technology lacking sufficient sensitivity, helps to explain why the chronic but low-level neuroinflammation purported to be present in the brains of ME/CFS (and PCFS) sufferers has gone unreported by patients, and has been largely undetected by scientists, until more recently. Over-activation of microglia and astrocytes is increasingly being proposed to be at the heart of ME/CFS (and PCFS) pathophysiology.

A key Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) study (2014) provided evidence of glial-cell over-activity, implicating neuroinflammation within the brain’s limbic system, of ME/CFS patients. Other cerebral spinal fluid and neuroimaging studies, including a more recent Magnetic Resonance Spectroscopy (MRS)/MRI Thermometry study (2019), have added support to this concept.

Resultant dysfunction of the limbic system and its closely-connected hypothalamus, which in turn leads to a disturbed autonomic nervous system (ANS) and dysfunctional hypothalamic-pituitary-adrenal-axis (HPA-axis) could then account for the diverse range of symptoms reported in ME/CFS (and PCFS). These symptoms include chronic fatigue, flu-like malaise, mood, memory and cognitive problems (limbic system), sleep, taste, visual and thermostatic-control problems (hypothalamus), gastro-intestinal disturbance, cardiovascular problems and hypotension (ANS), as well as increased frequency of urination and lower blood cortisol levels (HPA-axis).

A dysfunctional hypothalamic paraventricular nucleus (PVN), a potentially vulnerable site, within the brains of genetically susceptible people, which functions normally as a stress-control integrator, is proposed to be at the core of ME/CFS (and PCFS) aetiology and pathophysiology.

It is proposed that all triggers of ME/CFS, be they viral (Epstein-Barr Virus is the most common trigger), or non-viral; including other infectious diseases, multiple vaccinations, emotional trauma or chemical toxin shock, share a common triggering mechanism. They are each proposed to manifest themselves as severe physiological stressors, which by a combination of humoral and neural routes, target, the hypothalamic PVN, of genetically susceptible individuals. By exceeding an intrinsic stress-threshold pertaining to the complex neurological circuitry, within the hypothalamic PVN, the triggering stressor is proposed to overload it into a (permanently) iii dysfunctional state.

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes Coronavirus Disease 2019 (COVID-19), in common with the triggering stressors of ME/CFS, also manifests itself as a severe physiological stressor, due to a cytokine surge at the site of the primary infection (the lungs). This particular stressor is, also, proposed to target the hypothalamic PVN, in genetically susceptible people, thus triggering PCFS. Life’s ongoing physiological stressors, such as physical, mental overexercise, chemical toxin exposure, emotional and financial stress, all of which are known to exacerbate and perpetuate ME/CFS (as well as PCFS) could do so by then targeting a now “compromised” (possibly inflamed) stress-sensitive hypothalamic PVN, by similar routes.

Then if an alternative, but variable (according to fluctuating neuroinflammation of the hypothalamic PVN, itself) stress threshold was exceeded, commonly reported post-exertional malaise (PEM) episodes, more problematic flare-ups, and even more severe prolonged and characteristic relapses could ensue.

It is proposed that a dysfunctional hypothalamic PVN, thereby, acts as an epicentre to a radiating neuroinflammatory response within the brains of ME/CFS (and PCFS) sufferers. A neuroinflammatory pathway, as proposed to be shared by the early-onset stages of several progressive neuroinflammatory (neurodegenerative) diseases could also be shared by ME/CFS, and PCFS. Indeed, this pathway could be shared by other potentially nonprogressive neuroinflammatory disorders, such as the closely-related fibromyalgia, mental health disorders, epilepsy, and migraines.

Might then the “drivers” of the inflammatory process, which sustain glial-cell activation (and neuroinflammation), in ME/CFS (and PCFS), be the perpetuating stressors, themselves, acting in combination with a now “compromised” and stress-sensitive hypothalamic PVN? If so, what then might be the mechanistic detail linking a stressor-targeted hypothalamic PVN and microglial activation in ME/CFS (and PCFS)?

One attractive scenario requiring further investigation involves the release of corticotrophin releasing hormone (CRH), which is released naturally by the hypothalamic PVN due to stress. The chronic release of CRH from a stress-sensitive, dysfunctional hypothalamic PVN might induce microglia activation, leading to chronic neuroinflammation, via the stimulation of mast-cells.

Two papers were published in relation to this neuroinflammatory paradigm for ME/CFS (2018, 2019), followed by another paper (2021), in which a paradigm was presented to explain the more recently emergent, but equally perplexing, Long-COVID related “PostCOVID-19 Fatigue Syndrome” (PCFS).

The neuroinflammatory model presented is both iv coherent and unifying for all triggering stressors and perpetuating stressors of ME/CFS (& PCFS), without the need for subtypes (as many other models require), but it does require validation. To this effect, it is hoped that this neuroinflammatory model will be both thought-provoking, as well as providing a framework for scientific researchers to test, critique, modify, and develop, into the future.

More brain-focussed research, using increasingly sophisticated neuroimaging technology (especially enhanced PET/MRI) is recommended. Then, a brain-signature for both ME/CFS (and PCFS) might even become attainable, within the next decade, perhaps.

Long-COVID related PCFS, affecting millions of people worldwide, presents a golden opportunity for in-depth longitudinal neuroimaging studies (following patients through relapse-recovery cycles) to develop a better understanding of PCFS (and ME/CFS) pathophysiology.

Source: Mackay, A. A neuroinflammatory paradigm can explain Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome and Post-COVID-19 Fatigue Syndrome. PhD Thesis. University of Otago, New Zealand.  https://ourarchive.otago.ac.nz/bitstream/handle/10523/15089/MackayAngus2021PhD.pdf?sequence=1&isAllowed=y (PDF file)

Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients

Highlights

  • Multi-‘omics identified phenotypic, gut microbial, and metabolic biomarkers for ME/CFS.
  • Reduced gut microbial diversity and increased plasma sphingomyelins in ME/CFS.
  • Short-term patients had more severe gut microbial dysbiosis with decreased butyrate.
  • Long-term patients had more significant metabolic and clinical aberrations

Summary

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive.

Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79).

First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations.

Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate.

In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne D. Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-‘omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host & Microbe 31, 273–287. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00021-5 (Full text)