Memory alterations after COVID-19 infection: a systematic review

Abstract:

SARS-CoV-2 infection has a wide range of both acute and long-term symptoms. Memory alterations have been frequently reported in studies that explore cognition. The main objective of the systematic review is to update and further analyze the existing evidence of objective memory impairments in long-COVID-19 considering sample and study design characteristics, as well as to explore associations between memory performance and their epidemiological, clinical, and pathological features.

A total of 13 studies were identified by searching in PubMed, Web of Science, and PsycInfo databases up to May 6, 2022. Most studies evaluated verbal component of memory in the short-term and long-term recall up to 30 min and mainly performed a single assessment completed at 4-6 months after the infection. The samples mainly consisted of middle-aged adults that required hospitalization. Samples were not stratified by sex, age, and severity.

Poor verbal learning was reported in most cases (6-58%), followed by deficits in long-term (4-58%) and short-term (4-37%) verbal memory. Visuospatial component of memory was studied less than verbal component, showing impairment of long-term retention of visual items (10-49%). COVID-19 severity in the acute stage was not systematically associated with poor memory performance. Verbal memory deficits were associated with anxiety and depression.

The existing literature on objective memory assessment in long-COVID suggests further research is warranted to confirm memory dysfunction in association with epidemiological, pathological, and clinical factors, using both verbal and visuospatial tests, and exploring in deep long-term memory deficits.

Source: Llana T, Zorzo C, Mendez-Lopez M, Mendez M. Memory alterations after COVID-19 infection: a systematic review. Appl Neuropsychol Adult. 2022 Sep 15:1-14. doi: 10.1080/23279095.2022.2123739. Epub ahead of print. PMID: 36108666.  https://pubmed.ncbi.nlm.nih.gov/36108666/

Cognitive task performance and subjective cognitive symptoms in individuals with Chronic Fatigue Syndrome or Fibromyalgia: A cross-sectional analysis of the Lifelines cohort study

Abstract:

Objective: This study examined cognitive task performance and self-reported cognitive functioning in individuals with chronic fatigue syndrome (CFS) and fibromyalgia (FM) in a population-based sample and investigated the role of mood and anxiety disorders as well as severity of the physical symptoms.

Methods: This study was performed in 79,966 participants (Mean age: 52.9, SD = ±12.6 years, 59.2% women) from the Lifelines general-population. Symptoms consistent with the diagnostic criteria for CFS and FM were assessed using questionnaires. Two comparison groups were used: participants with self-reported medical disorders with well-defined pathophysiology (i.e., multiple sclerosis and rheumatic arthritis) and controls without these diseases. Objective task-performance was based on the computerized CogState cognitive battery and subjective cognitive symptoms using the concentration subscale of the Checklist Individual Strength.

Results: Cognitive task performance was poorer in individuals with CFS vs. controls without disease and controls with a medical disorder, although the severity of cognitive dysfunction was mild. Participants meeting criteria for CFS (n = 2,461) or FM (n = 4,295) reported more subjective cognitive symptoms compared to controls without a medical disorder (d = 1.53, 95%CI = 1.49-1.57 for CFS; d = 1.25, 95%CI = 1.22-1.29 for FM) and participants with a medical disease (d = 0.62, 95%CI = 0.46-0.79 for CFS; d = 0.75, 95%CI = 0.70-0.80 for FM). These differences remained essentially the same when excluding participants with comorbid mood or anxiety disorders or adjusting for physical symptom severity.

Conclusions: Subjective cognitive symptoms and to a lesser extent suboptimal cognitive task performance are more prevalent in individuals with CFS or FM compared to controls without these conditions.

Source: Joustra ML, Hartman CA, Bakker SJL, Rosmalen JGM. Cognitive task performance and subjective cognitive symptoms in individuals with Chronic Fatigue Syndrome or Fibromyalgia: A cross-sectional analysis of the Lifelines cohort study. Psychosom Med. 2022 Aug 2. doi: 10.1097/PSY.0000000000001117. Epub ahead of print. PMID: 35980775.  https://pubmed.ncbi.nlm.nih.gov/35980775/

COVID fog demystified

Abstract:

Acute mild respiratory SARS-CoV-2 infection can lead to a more chronic cognitive syndrome known as “COVID fog.” New findings from Fernández-Castañeda et al. reveal how glial dysregulation and consequent neural circuit dysfunction may contribute to cognitive impairments in long COVID.

Source: Kao J, Frankland PW. COVID fog demystified. Cell. 2022 Jul 7;185(14):2391-2393. doi: 10.1016/j.cell.2022.06.020. Epub 2022 Jun 15. PMID: 35768007; PMCID: PMC9197953. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197953/ (Full text)

Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain

Abstract:

Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection.

Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection – without neuroinvasion – and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function.

Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.

Source: Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, Yalçın B, Taylor KR, Dutton S, Acosta-Alvarez L, Ni L, Contreras-Esquivel D, Gehlhausen JR, Klein J, Lucas C, Mao T, Silva J, Peña-Hernández MA, Tabachnikova A, Takahashi T, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Hefti M, Perl D, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. bioRxiv [Preprint]. 2022 Jan 10:2022.01.07.475453. doi: 10.1101/2022.01.07.475453. PMID: 35043113; PMCID: PMC8764721.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764721/ (Full text)

Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment (“brain fog”), orthostatic intolerance (OI) and other symptoms (“Long COVID”). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing.

Methods: We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app.

Participants: People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT.

Results: The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01).

Conclusions: A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.

Source: Vernon SD, Funk S, Bateman L, Stoddard GJ, Hammer S, Sullivan K, Bell J, Abbaszadeh S, Lipkin WI, Komaroff AL. Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne). 2022 Jun 23;9:917019. doi: 10.3389/fmed.2022.917019. PMID: 35847821; PMCID: PMC9285104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285104/ (Full text)

Memory impairments in chronic fatigue syndrome patients

Abstract:

Background: Chronic Fatigue Syndrome (CFS) patients often report memory problems. Prior research has produced conflicting results on this topic. Episodic memory impairments appear to be robust, but tasks assessing other aspects of memory (e.g., working and semantic memory) show slower speed but no decrease in accuracy. This study examined whether the memory problems of CFS patients reflect slower responses. Methods: CFS patients were recruited from a specialist clinic. Sixty-seven patients carried out tasks measuring immediate recall, delayed recognition memory, logical reasoning and semantic processing. The control group were 126 healthy volunteers recruited from the general population.

Results: The CFS patients recalled fewer words and had poorer delayed recognition. The other tasks showed slower speed but no effect on accuracy.

Conclusions: CFS patients have poorer immediate recall and delayed recognition memory. The delayed recognition memory probably reflected the poorer immediate recall. Slower responding was present in three of the tasks, and it is possible that this also accounted for the reduced immediate recall.

Source:  Smith, Andrew. Memory impairments in chronic fatigue syndrome patients. wjpmr, 2022, 8(6), 50-54. ISSN 2455-3301 https://orca.cardiff.ac.uk/id/eprint/150176/1/article_1654063780_pub.pdf (Full text)

Challenges of memory enhancers

Abstract:

40 per cent of people over the age of 65 experience some form of memory loss, called as the age related memory impairment. This might be due to hormone and proteins (Growth factors) which repair the brain cells decline with age. Certain conditions such as age, stress, disease and excessive emotional response may lead to loss of memory, loss of learning ability and altered mood and behaviour. These conditions may be treated by using nootropic agents which can help to improve learning abilities and memory.

Source: Chaudhry, Sunil. Challenges of memory enhancers. Annals of Geriatric Education and Medical Sciences; 2020/08/22. https://www.agems.in/article-details/11990 (Full text)

Study on the active components and mechanism of Suanzaoren decoction in improving cognitive impairment caused by sleep deprivation

Abstract:

Ethnopharmacological relevance: Suanzaoren Decoction (SZRD) is a traditional and classic prescription for the treatment of insomnia, with a history of more than 1,000 years. It replenishes blood components, calms the nerves, reduces fever and irritability. It is commonly used in the clinical treatment of chronic fatigue syndrome, cardiac neurosis, and menopausal syndromes. Modern pharmacological studies have shown that it improves cognitive impairment; however, its mechanism of action remains unclear.

Aim of the study: This study preliminarily investigated the potential bioactive components and mechanism of SZRD in improving cognitive impairment by exploring network pharmacology, molecular docking, and conducting in vivo experiments.

Materials and methods: The components of various Chinese herbs in SZRD and their disease-related targets were identified through network pharmacology and literature. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of intersection targets were performed using the relevant database. Next, the “Components-Targets-Pathways” (C-T-P) and “Protein-Protein interaction” networks were constructed using the enrichment analysis results to further identify potential pathways, bioactive components, and hub genes. At the same time, molecular docking was used to further distinguish the key bioactive components and genes of SZRD responsible for improving cognitive impairment. Finally, the potential mechanism of action was further analysed and verified using in vivo experiments.

Results: A total of 117 potential active components and 138 intersection targets were identified by network pharmacology screening. The key bioactive components, including calycosin, 5-Prenylbutein, licochalcone G, glypallichalcone, and ZINC189892, were identified by analysing the networks and molecular docking results. Hub genes included ACHE, CYP19A1, EGFR, ESR1, and ESR2. The oestrogen signalling pathway was the most important in the enrichment analysis. In vivo experiments further proved that SZRD could improve cognitive impairment by affecting the oestrogen signalling pathway and the expression of ACHE and CYP19A1.

Conclusions: Network pharmacology and in vivo experiments demonstrate that SZRD improves cognitive impairment caused by sleep disturbance through estrogen receptor pathway, which provides a basis for its clinical application.

Source: Cheng L, Wang F, Li ZH, Wen C, Ding L, Zhang SB, You QY. Study on the active components and mechanism of Suanzaoren decoction in improving cognitive impairment caused by sleep deprivation. J Ethnopharmacol. 2022 Jun 28:115502. doi: 10.1016/j.jep.2022.115502. Epub ahead of print. PMID: 35777606. https://www.sciencedirect.com/science/article/abs/pii/S0378874122005414 (Full text)

Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID

Abstract:

Introduction: There have been more than 425 million COVID-19 infections worldwide. Post-COVID illness has become a common, disabling complication of this infection. Therefore, it presents a significant challenge to global public health and economic activity.

Methods: Comprehensive clinical assessment (symptoms, WHO performance status, cognitive testing, CPET, lung function, high-resolution CT chest, CT pulmonary angiogram and cardiac MRI) of previously well, working-age adults in full-time employment was conducted to identify physical and neurocognitive deficits in those with severe or prolonged COVID-19 illness.

Results: 205 consecutive patients, age 39 (IQR30.0-46.7) years, 84% male, were assessed 24 (IQR17.1-34.0) weeks after acute illness. 69% reported ≥3 ongoing symptoms. Shortness of breath (61%), fatigue (54%) and cognitive problems (47%) were the most frequent symptoms, 17% met criteria for anxiety and 24% depression. 67% remained below pre-COVID performance status at 24 weeks. One third of lung function tests were abnormal, (reduced lung volume and transfer factor, and obstructive spirometry). HRCT lung was clinically indicated in <50% of patients, with COVID-associated pathology found in 25% of these. In all but three HRCTs, changes were graded ‘mild’. There was an extremely low incidence of pulmonary thromboembolic disease or significant cardiac pathology. A specific, focal cognitive deficit was identified in those with ongoing symptoms of fatigue, poor concentration, poor memory, low mood, and anxiety. This was notably more common in patients managed in the community during their acute illness.

Conclusion: Despite low rates of residual cardiopulmonary pathology, in this cohort, with low rates of premorbid illness, there is a high burden of symptoms and failure to regain pre-COVID performance 6-months after acute illness. Cognitive assessment identified a specific deficit of the same magnitude as intoxication at the UK drink driving limit or the deterioration expected with 10 years ageing, which appears to contribute significantly to the symptomatology of long-COVID.

Source: Holdsworth DA, Chamley R, Barker-Davies R, O’Sullivan O, Ladlow P, Mitchell JL, Dewson D, Mills D, May SLJ, Cranley M, Xie C, Sellon E, Mulae J, Naylor J, Raman B, Talbot NP, Rider OJ, Bennett AN, Nicol ED. Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS One. 2022 Jun 10;17(6):e0267392. doi: 10.1371/journal.pone.0267392. PMID: 35687603; PMCID: PMC9187094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187094/ (Full text)

Post-acute COVID-19 cognitive impairment and decline uniquely associate with kynurenine pathway activation: a longitudinal observational study

Abstract:

Cognitive impairment and function post-acute mild to moderate COVID-19 are poorly understood. We report findings of 128 prospectively studied SARS-CoV-2 positive patients. Cognition and olfaction were assessed at 2-, 4- and 12-months post-diagnosis. Lung function, physical and mental health were assessed at 2-month post diagnosis. Blood cytokines, neuro-biomarkers, and kynurenine pathway (KP) metabolites were measured at 2-, 4-, 8- and 12-months. Mild to moderate cognitive impairment (demographically corrected) was present in 16%, 23%, and 26%, at 2-, 4- and 12-months post diagnosis, respectively. Overall cognitive performance mildly, but significantly (p<.001) declined. Cognitive impairment was more common in those with anosmia (p=.05), but only at 2 months. KP metabolites quinolinic acid, 3-hydroxyanthranilic acid, and kynurenine were significantly (p<.001) associated with cognitive decline. The KP as a unique biomarker offers a potential therapeutic target for COVID-19-related cognitive impairment.

Source: Lucette A. CysiqueDavid JakabekSophia G. BrackenYasmin Allen-DavidianBenjamin HengSharron ChowMona DehhaghiAnanda Staats PiresDavid R. DarleyAnthony ByrneChansavath PhetsouphanhAnthony KelleherGregory J. DoreGail V. MatthewsGilles J GuilleminBruce J. Brew. Post-acute COVID-19 cognitive impairment and decline uniquely associate with kynurenine pathway activation: a longitudinal observational study. https://www.medrxiv.org/content/10.1101/2022.06.07.22276020v1.full-text (Full text)