Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations

Abstract:

Background: Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking.

Methods: Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case–control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed.

Results: Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, e, O2CO2 T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for e/CO2, PetCO2, O2pulse, work, O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1.

Conclusions: Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered.

Trial registration number: ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.

Source: Keller, B., Receno, C.N., Franconi, C.J. et al. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 22, 627 (2024). https://doi.org/10.1186/s12967-024-05410-5 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05410-5#Abs1 (Full text)

 

Comparison of the muscle oxygenation during submaximal and maximal exercise tests in patients post-coronavirus disease 2019 syndrome with pulmonary involvement

Abstract:

Introduction: Pulmonary involvement is prevalent in patients with coronavirus disease 2019 (COVID-19). Arterial hypoxemia may reduce oxygen transferred to the skeletal muscles, possibly leading to impaired exercise capacity. Oxygen uptake may vary depending on the increased oxygen demand of the muscles during submaximal and maximal exercise.

Objective: This study aimed to compare muscle oxygenation during submaximal and maximal exercise tests in patients with post-COVID-19 syndrome with pulmonary involvement.

Methods: Thirty-nine patients were included. Pulmonary function (spirometry), peripheral muscle strength (dynamometer), quadriceps femoris (QF) muscle oxygenation (Moxy® device), and submaximal exercise capacity (six-minute walk test (6-MWT)) were tested on the first day, maximal exercise capacity (cardiopulmonary exercise test (CPET)) was tested on the second day. Physical activity level was evaluated using an activity monitor worn for five consecutive days. Cardiopulmonary responses and muscle oxygenation were compared during 6-MWT and CPET.

Results: Patients’ minimum and recovery muscle oxygen saturation were significantly decreased; maximum total hemoglobin increased, heart rate, blood pressure, breathing frequency, dyspnea, fatigue, and leg fatigue at the end-of-test and recovery increased in CPET compared to 6-MWT (p < .050). Peak oxygen consumption (VO2peak) was 18.15 ± 4.75 ml/min/kg, VO2peak; percent predicted < 80% was measured in 51.28% patients. Six-MWT distance and QF muscle strength were less than 80% predicted in 58.9% and 76.9% patients, respectively.

Conclusions: In patients with post-COVID-19 syndrome with pulmonary involvement, muscle deoxygenation of QF is greater during maximal exercise than during submaximal exercise. Specifically, patients with lung impairment should be evaluated for deoxygenation and should be taken into consideration during pulmonary rehabilitation.

Source: Kavalcı Kol B, Boşnak Güçlü M, Baytok E, Yılmaz Demirci N. Comparison of the muscle oxygenation during submaximal and maximal exercise tests in patients post-coronavirus disease 2019 syndrome with pulmonary involvement. Physiother Theory Pract. 2024 Mar 12:1-14. doi: 10.1080/09593985.2024.2327534. Epub ahead of print. PMID: 38469863. https://pubmed.ncbi.nlm.nih.gov/38469863/

Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance

Abstract:

Background Post-acute sequelae of COVID-19 (PASC) affects a significant portion of patients who have previously contracted SARS-CoV-2, with exertional intolerance being a prominent symptom.

Study Objective This study aimed to characterize the invasive hemodynamic abnormalities of PASC-related exertional intolerance using a larger data set from invasive cardiopulmonary exercise testing (iCPET).

Study Design & Intervention Fifty-five patients were recruited from the Yale Post-COVID-19-Recovery-Program, with most experiencing mild acute illness. Supine right heart catheterization (RHC) and iCPET were performed on all participants.

Main results The majority (75%) of PASC patients exhibited impaired peak systemic oxygen extraction (pEO2) during iCPET in conjunction with supranormal cardiac output (CO) (i.e., PASC alone group), On average, the PASC alone group exhibited a “normal” peak exercise capacity, VO2 (89±18% predicted). Approximately 25% of patients had evidence of central cardiopulmonary pathology (i.e., 12 with resting and exercise HFpEF and 2 with exercise PH). PASC patient with HFpEF (i.e., PASC HFpEF group) exhibited similarly impaired pEO2 with well compensated PH (i.e., peak VO2 and cardiac output >80% respectively) despite aberrant central cardiopulmonary exercise hemodynamics. PASC patients with HFpEF also exhibited increased body mass index of 39±7 kg·m−2. To examine the relative contribution of obesity to exertional impairment in PASC HFpEF, a control group compromising of obese non-PASC group (n=61) derived from historical iCPET cohort was used. The non-PASC obese patients with preserved peak VO2 (>80% predicted) exhibited a normal peak pulmonary artery wedge pressure (17±14 versus 25±6 mmHg; p=0.03) with similar maximal voluntary ventilation (90±12 versus 86±10%predicted; p=0.53) compared to PASC HFpEF patients. Impaired pEO2 was not significantly different between PASC patients who underwent supervised rehabilitation and those who did not (p=0.19).

Conclusions This study highlights the importance of considering impaired pEO2 in PASC patients with persistent exertional intolerance unexplained by conventional investigative testing. Results of current study also highlights the prevalence of a distinct high output failure HFpEF phenotype in PASC with a primary peripheral limitation to exercise.

Source: Peter A. Kahn, Phillip Joseph, Paul M. Heerdt, Inderjit Singh. Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance. ERJ Open Research Jan 2023, 00714-2023; DOI: 10.1183/23120541.00714-2023 https://openres.ersjournals.com/content/early/2023/12/07/23120541.00714-2023 (Full text available as PDF file)

Decreased physical performance despite objective and subjective maximal exhaustion in post-COVID-19 individuals with fatigue

Abstract:

Introduction: Fatigue is a common symptom in post-COVID-19 patients. Individuals with fatigue often perform less well compared to healthy peers or without fatigue. It is not yet clear to what extent fatigue is related to the inability to reach maximum exhaustion during physical exercise.

Methods: A symptom-based questionnaire based on the Carruthers guidelines (2003) was used for reporting the presence of fatigue and further symptoms related to COVID-19 from 85 participants (60.0% male, 33.5 ± 11.9 years). Cardiopulmonary exercise testing (CPET) and lactate measurement at the end of the test were conducted. Objective and subjective exhaustion criteria according to Wasserman of physically active individuals with fatigue (FS) were compared to those without fatigue (NFS).

Results: Differences between FS and NFS were found in Peak V̇O2/BM (p < 0.001) and Max Power/BM (p < 0.001). FS were more likely to suffer from further persistent symptoms (p < 0.05). The exhaustion criterion Max. lactate was reached significantly more often by NFS individuals.

Conclusion: Although the aerobic performance (Max Power/BM) and the metabolic rate (Peak V̇O2/BM and Max. lactate) of FS were lower compared to NFS, they were equally able to reach objective exhaustion criteria. The decreased number of FS who reached the lactate criteria and the decreased V̇O2 peak indicates a change in metabolism. Other persistent post-COVID-19 symptoms besides fatigue may also impair performance, trainability and the ability to reach objective exhaustion.

Trial registration: Trial registration: DRKS00023717; date of registration: 15.06.2021 (retrospectively registered).

Source: Vollrath S, Matits L, Schellenberg J, Kirsten J, Steinacker JM, Bizjak DA. Decreased physical performance despite objective and subjective maximal exhaustion in post-COVID-19 individuals with fatigue. Eur J Med Res. 2023 Aug 26;28(1):298. doi: 10.1186/s40001-023-01274-5. PMID: 37633931; PMCID: PMC10464445. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464445/ (Full text)

Exercise Capacity and Vascular Function in Long-COVID Sufferers

Abstract:

Background: Exercise intolerance is a prominent aetiology of long-COVID syndrome, yet the mechanisms causing the debilitation remain unknown. Vascular dysfunction is thought to play a role, hence we sought to determine if there is a relationship between exercise capacity and vascular function in COVID survivors.

Methods: Forty-two COVID-19 survivors; 33 self-identified long-COVID sufferers and 9 recovered controls (40.7±11.8 vs 40.2±14.5 years, both 67% female) underwent extensive phenotyping >3 months post-infection. Blood pressure (BP) and heart rate were measured (automated BP device), before carotid, femoral, and radial tonometry (carotid–femoral pulse wave velocity; [cPWV], augmentation index; [AIx]) were performed to assess vascular stiffness. Endothelium-dependent and independent dilatation were assessed via brachial artery flow-mediated dilation ([FMD]; Doppler-ultrasound) in response to reactive hyperaemia and glyceryl trinitrate respectively. Cardiopulmonary exercise testing determined peak oxygen uptake (VO2).

Results: Long-COVID sufferers had reduced VO2 peak compared to controls (26.5±7.0 vs 32.8±11.3 ml/min/kg, p= 0.045). Haemodynamic and vascular function were similar between groups, though there was a medium effect size (ES) for between group differences in cPWV (6.6±1.2 vs 6.1±0.9 m/sec, p=0.20; ES 0.44) and AIx (14±15% vs 4±16%, p=0.11; ES 0.67). VO2 peak was inversely correlated with AIx (r = -0.60, p<0.001) and cPWV (r = -0.55, p<0.001). There was no significant association between endothelial function and exercise capacity parameters.

Conclusions: Lower VO2peak measures in long-COVID participants were strongly associated with increased AIx and cPWV. These findings indicate the need for further longitudinal investigations to determine if these manifestations persist and impact long-term cardiovascular health.

Source: I.Wallace, E. Howden, D. Green, G. Sesa-Ashton. Exercise Capacity and Vascular Function in Long-COVID Sufferers. Heart, Lung and Circulation. ABSTRACT| VOLUME 32, SUPPLEMENT 3, S114-S115, JULY 2023. https://www.heartlungcirc.org/article/S1443-9506(23)04000-3/fulltext 

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis

Abstract:

Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects on quality of life and the economy are significant, thus warranting urgent attention to understand the pathophysiology. Herein we describe our perspective that Long COVID is a continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of disease and can cause or exacerbate other pathologies common in Long COVID, such as mast cell activation syndrome and dysautonomia.
Considering the SARS-CoV-2 spike protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, we predict that persistent spike protein will be a key mechanism driving the continued coagulopathy in Long COVID. We discuss several treatment targets to address the coagulopathy, and predict that (particularly early) treatment with combination anticoagulant and antiplatelet drugs will bring significant relief to many patients, supported by a case study. To help focus attention on such treatment targets, we propose Long COVID should be referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require urgent testing, especially as the world tries to co-exist with COVID-19.

Source: Kerr R, Carroll HA. Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis. Research Square; 2023. DOI: 10.21203/rs.3.rs-2939263/v1. https://assets.researchsquare.com/files/rs-2939263/v1_covered_7190a867-1475-4b57-b220-716a953649f1.pdf?c=1684433225 (Full text)

Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID

Abstract:

Background: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 “PASC” or “Long COVID”) remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity.

Methods: We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in a post-COVID cohort, compared those with or without symptoms, and correlated findings with previously measured biomarkers.

Results: Sixty participants (median age 53, 42% female, 87% non-hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted) compared to 3/19 (16%) without symptoms (p = 0.02). Adjusted peak VO2 was 5.2 ml/kg/min lower (95%CI 2.1-8.3; p = 0.001) or 16.9% lower percent predicted (95%CI 4.3-29.6; p = 0.02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias were absent.

Conclusions: Cardiopulmonary symptoms >1 year following COVID-19 were associated with reduced exercise capacity, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary Long COVID.

Source: Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID. J Infect Dis. 2023 May 11:jiad131. doi: 10.1093/infdis/jiad131. Epub ahead of print. PMID: 37166076. https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiad131/7159960 (Full text available as PDF file)

Post-acute Sequelae of SARS Co-V2 and Chronic Fatigue/Myalgic Encephalitis Share Similar Pathophysiologic Mechanisms of Exercise Limitation

Abstract:

Abstract available online: https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A6470

Source: S. Jothi, G. Claessen, M. Insel, S. Kubba, E. Howden, S.-R. Carmona, F.P. Rischard. Post-acute Sequelae of SARS Co-V2 and Chronic Fatigue/Myalgic Encephalitis Share Similar Pathophysiologic Mechanisms of Exercise Limitation. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A6470

Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID

Abstract:

Objective: Chronic mental and physical fatigue and post-exertional malaise are the more debilitating symptoms of long COVID-19. The study objective was to explore factors contributing to exercise intolerance in long COVID-19 to guide development of new therapies. Exercise capacity data of patients referred for a cardiopulmonary exercise test (CPET) and included in a COVID-19 Survivorship Registry at one urban health center were retrospectively analyzed.

Results: Most subjects did not meet normative criteria for a maximal test, consistent with suboptimal effort and early exercise termination. Mean O2 pulse peak % predicted (of 79 ± 12.9) was reduced, supporting impaired energy metabolism as a mechanism of exercise intolerance in long COVID, n=59. We further identified blunted rise in heart rate peak during maximal CPET. Our preliminary analyses support therapies that optimize bioenergetics and improve oxygen utilization for treating long COVID-19.

Source: Norweg A, Yao L, Barbuto S, Nordvig AS, Tarpey T, Collins E, Whiteson J, Sweeney G, Haas F, Leddy J. Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID. Respir Physiol Neurobiol. 2023 Apr 17;313:104062. doi: 10.1016/j.resp.2023.104062. Epub ahead of print. PMID: 37076024; PMCID: PMC10108551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108551/ (Full text)

Characteristics associated with physical functioning and fatigue in patients with chronic fatigue syndrome (CFS): secondary analyses of a randomized controlled trial

Abstract

Objective: This study aimed to explore associations at the group level between patient characteristics at baseline and the outcomes of physical functioning and fatigue in patients with chronic fatigue syndrome (CFS) participating in a randomized controlled trial on cognitive behavioural therapy (CBT).

Methods/design: Consecutively, 236 adult participants fulfilling the Centres for Disease Control and Prevention (CDC) 1994 criteria for CFS were randomly allocated to either 16 weeks of standard CBT, 8 weeks of Interpersonal CBT or a treatment as usual control group. In secondary analyses we investigated how gender, age, pain, anxiety, depression, memory and VO2max at baseline were associated with physical function and fatigue before and after treatment, controlling for the CBT-interventions and the baseline levels of the outcome measures.

For the two groups receiving CBT, a 1-year follow-up analysis was also done. Bivariate and multivariable linear regression was used to explore the targeted associations.

Results: At baseline, less pain (p < .001) and higher VO2max (p = 0.014) were associated with better physical function, while better memory (p = 0.001) and fewer depressive symptoms (p = 0.017) were associated with less fatigue. Better memory and physical function at baseline (p = 0.015 and p < .001, respectively) and male gender (p = 0.003) were associated with higher physical function post-intervention.

Male gender (p = 0.010) was associated with higher physical function at 1-year follow-up. Fatigue severity at baseline was the only variable associated with follow up scores for fatigue (p < .001).

Conclusion: Our findings show that fatigue and physical function were associated with different types of characteristics at baseline, indicating a heterogeneity among CFS patients.

Source: Merethe Eide Gotaas, Tormod Landmark, Anne S. Helvik & Egil A. Fors (2023) Characteristics associated with physical functioning and fatigue in patients with chronic fatigue syndrome (CFS): secondary analyses of a randomized controlled trial, Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2023.2175521 https://www.tandfonline.com/doi/full/10.1080/21641846.2023.2175521 (Full text)