Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Reduced natural killer (NK) cell cytotoxicity is the most consistent immune finding in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Meta-analysis of the published literature determined the effect size of the decrement in ME/CFS. Databases were screened for papers comparing NK cell cytotoxicity in ME/CFS and healthy controls. A total of 28 papers and 55 effector:target cell ratio (E:T) data points were collected.

Cytotoxicity in ME/CFS was significantly reduced to about half of healthy control levels, with an overall Hedges’ g of 0.96 (0.75-1.18). Heterogeneity was high but was explained by the range of E:T ratios, different methods, and potential outliers. The outcomes confirm reproducible NK cell dysfunction in ME/CFS and will guide studies using the NK cell model system for pathomechanistic investigations.

Source: Baraniuk JN, Eaton-Fitch N, Marshall-Gradisnik S. Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol. 2024 Oct 17;15:1440643. doi: 10.3389/fimmu.2024.1440643. PMID: 39483457; PMCID: PMC11524851. https://pmc.ncbi.nlm.nih.gov/articles/PMC11524851/ (Full text)

Untargeted Metabolomics and Quantitative Analysis of Tryptophan Metabolites in Myalgic Encephalomyelitis Patients and Healthy Volunteers: A Comparative Study Using High-Resolution Mass Spectrometry

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide.

To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry.

mass

Source: Abujrais S, Vallianatou T, Bergquist J. Untargeted Metabolomics and Quantitative Analysis of Tryptophan Metabolites in Myalgic Encephalomyelitis Patients and Healthy Volunteers: A Comparative Study Using High-Resolution Mass Spectrometry. ACS Chem Neurosci. 2024 Sep 20. doi: 10.1021/acschemneuro.4c00444. Epub ahead of print. PMID: 39302151. https://pubs.acs.org/doi/10.1021/acschemneuro.4c00444 (Full text)

Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic syndromes of unknown etiology, accompanied by numerous symptoms affecting neurological and physical conditions. Despite frequent revisions of the diagnostic criteria, clinical practice guidelines are often outdated, leading to underdiagnosis and ineffective treatment. Our aim was to identify microRNA (miRNA) biomarkers implicated in pathological mechanisms underlying these diseases.
A comprehensive literature review using publicly accessible databases was conducted. Interesting miRNAs were extracted from relevant publications on ME/CFS and/or FM, and were then linked to pathophysiological processes possibly manifesting these chronic diseases. Dysregulated miRNAs in ME/CFS and FM may serve as promising biomarkers for these diseases.
Key identified miRNAs, such as miR-29c, miR-99b, miR-128, miR-374b, and miR-766, were frequently mentioned for their roles in immune response, mitochondrial dysfunction, oxidative stress, and central sensitization, while miR-23a, miR-103, miR-152, and miR-320 were implicated in multiple crucial pathological processes for FM and/or ME/CFS.
In summary, both ME/CFS and FM seem to share many dysregulated biological or molecular processes, which may contribute to their commonly shared symptoms. This miRNA-based approach offers new angles for discovering molecular markers urgently needed for early diagnosis or therapeutics to tackle the pathology of these medically unexplained chronic diseases.
Source: Tsamou M, Kremers FAC, Samaritakis KA, Roggen EL. Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. International Journal of Molecular Sciences. 2024; 25(17):9551. https://doi.org/10.3390/ijms25179551 https://www.mdpi.com/1422-0067/25/17/9551 (Full text)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available.

Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease’s multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances.

This comprehensive model not only advances our understanding of ME/CFS’s pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease’s complexity and the multifaceted approach required for its study and management.

Source: Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol. 2024 Jun 3;15:1386607. doi: 10.3389/fimmu.2024.1386607. PMID: 38887284; PMCID: PMC11180809. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180809/ (Full text)

Low Vasopressin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (P4-4.006)

Abstract:

Objective: To shed light on the pathophysiology of water homeostasis in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), classified by WHO as a neurological disease (ICD 10 code G933).

Background: The complex symptomatology of ME/CFS includes signs suggesting abnormal water homeostasis and hypovolemia. Since many patients report polyuria-polydipsia, we conducted an observational series of plasma and urine osmolality as well as plasma levels of vasopressin (VP) in consecutive patients diagnosed with ME/CFS according to the Canadian Consensus Criteria.

Design/Methods: Plasma and urine osmolality (P-Osm and U-Osm, respectively) and plasma VP levels were measured in 111 patients after overnight fasting and 10-hour fluid deprivation. The clinical routine also included brain MRI and blood chemistry.

Results: Following the fluid deprivation P-Osm was above normal (>292 mOsm/kg) in 61 patients (55.0%) and U-Osm below normal (< 750 mOsm/kg) in 74 patients (66.7%). VP-levels were below the level of detection (<1.6 pg/mL) in 91 patients (82.0%). A normal level of VP in relation to their P-Osm was found in 11 patients (9.9 %). The state resembling a central type of diabetes insipidus (cDI) would in the absence of hypophyseal imaging findings and blood chemistry consistent with any other hypophyseal hormonal defect be classified as idiopathic.

Conclusions: Our findings suggest that deficiency of vasopressin secretion is a fundamental measurable part of the disease mechanisms, which may underlie a number of symptoms in ME/CFS, including the common complaint of orthostatic intolerance.

Source: Helena Huhmar, Lauri Soinne, Per Sjögren, Bo Christer Bertilson, Per Hamid Ghatan, Björn Bragée, and Olli Polo. Low Vasopressin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (P4-4.006) Neurology, April 9, 2024 issue 102 (17_supplement_1) https://doi.org/10.1212/WNL.000000000020576 https://www.neurology.org/doi/10.1212/WNL.0000000000205761

Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic illness often triggered by an initiating acute event, mainly viral infections. The transition from acute to chronic disease remains unknown, but interest in this phenomenon has escalated since the COVID-19 pandemic and the post-COVID-19 illness, termed ‘long COVID’ (LC). Both ME/CFS and LC share many clinical similarities.

Here, we present recent findings in ME/CFS research focussing on proposed disease pathologies shared with LC. Understanding these disease pathologies and how they influence each other is key to developing effective therapeutics and diagnostic tests. Given that ME/CFS typically has a longer disease duration compared with LC, with symptoms and pathologies evolving over time, ME/CFS may provide insights into the future progression of LC.

Source: Annesley SJ, Missailidis D, Heng B, Josev EK, Armstrong CW. Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol Med. 2024 Mar 4:S1471-4914(24)00028-5. doi: 10.1016/j.molmed.2024.02.003. Epub ahead of print. PMID: 38443223. https://www.sciencedirect.com/science/article/pii/S1471491424000285 (Full text)

Subcortical and Default Mode Network connectivity is impaired in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic condition with core symptoms of fatigue, and cognitive dysfunction suggesting a key role for the central nervous system, in the pathophysiology of this disease. Several studies have reported altered functional connectivity (FC) related to motor and cognitive deficits in ME/CFS patients. In this study, we compared functional connectivity differences between 31 ME/CFS and 15 healthy controls (HC) using 7 Tesla MRI. Functional scans were acquired during a cognitive Stroop color-word task and blood oxygen level-dependent (BOLD) time-series were computed for 27 regions of interest (ROIs) in the cerebellum, brainstem, and salience and default mode networks.

Region-based comparison detected reduced FC between the pontine nucleus and cerebellum vermis IX (p=0.027) for ME/CFS patients compared to HC. Our ROI-to-voxel analysis found significant impairment of FC within ponto-cerebellar regions in ME/CFS. Correlation analyses of connectivity with clinical scores in ME/CFS patients detected associations of FC with ‘duration of illness’ and ‘memory scores’ in salience network hubs and cerebellum vermis, and with ‘respiratory rate’ within medulla and the default mode network FC.

This novel investigation is the first to report extensive involvement of aberrant ponto-cerebellar connections consistent with ME/CFS symptomatology. This highlights the involvement of the brainstem and the cerebellum in the pathomechanism of ME/CFS.

Source: Maira INDERYAS, Kiran Thapaliya, Sonya Marshall-Gradisnik, Markus Barth, Leighton Barnden. Subcortical and Default Mode Network connectivity is impaired in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Neurosci. Sec. Brain Imaging Methods. Volume 17 – 2023 | doi: 10.3389/fnins.2023.1318094 https://www.frontiersin.org/articles/10.3389/fnins.2023.1318094/full (Full text)

The potential role of ocular and otolaryngological mucus proteins in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat.

Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body’s defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection.

Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.

Source: Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle KK, Nathason L, Fletcher MA, Klimas NG, Craddock TJA. The potential role of ocular and otolaryngological mucus proteins in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Med. 2024 Jan 3;30(1):1. doi: 10.1186/s10020-023-00766-8. PMID: 38172662. https://molmed.biomedcentral.com/articles/10.1186/s10020-023-00766-8 (Full text)

Association of circulating biomarkers with illness severity measures differentiates myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID-19 condition: a prospective cohort study

Abstract:

Background: Accumulating evidence suggests that autonomic dysfunction and persistent systemic inflammation are common clinical features in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID. However, there is limited knowledge regarding their potential association with circulating biomarkers and illness severity status.

Methods: This prospective, cross-sectional, case-control cohort study aimed to distinguish between the two patient populations by using self-reported outcome measures and circulating biomarkers to assess endothelial function and systemic inflammation. Thirty-one individuals with ME/CFS, 23 individuals with long COVID, and 31 matched healthy subjects were included. Regression analysis was used to examine associations between self-reported outcome measures and circulating biomarkers in study participants. Classification across groups was based on principal component and discriminant analyses.

Results: Four ME/CFS patients (13%), 1 with long COVID (4%), and 1 healthy control (3%) presented postural orthostatic tachycardia syndrome (POTS) with the 10-min NASA lean test. Compared with healthy controls, ME/CFS and long COVID subjects showed higher levels of ET-1 (p < 0.05) and VCAM-1 (p < 0.001), and lower levels of nitrites (NOx assessed as NO2 + NO3) (p < 0.01). ME/CFS patients also showed higher levels of serpin E1 (PAI-1) and E-selectin than did both long COVID and control subjects (p < 0.01 in all cases). Long COVID patients had lower TSP-1 levels than did ME/CFS patients and healthy controls (p < 0.001). As for inflammation biomarkers, both long COVID and ME/CFS subjects had higher levels of TNF-α than did healthy controls (p < 0.01 in both comparisons). Compared with controls, ME/CFS patients had higher levels of IL-1β (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.01), IL-10 (p < 0.001), IP-10 (p < 0.05), and leptin (p < 0.001). Principal component analysis supported differentiation between groups based on self-reported outcome measures and endothelial and inflammatory biomarkers.

Conclusions: Our findings revealed that combining biomarkers of endothelial dysfunction and inflammation with outcome measures differentiate ME/CFS and Long COVID using robust discriminant analysis of principal components. Further research is needed to provide a more comprehensive characterization of these underlying pathomechanisms, which could be promising targets for therapeutic and preventive strategies in these conditions.

Source: Joan Carles Domingo, Federica Battistini, Begoña Cordobilla et al. Association of circulating biomarkers with illness severity measures differentiates myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID-19 condition: a prospective cohort study, 16 December 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3736031/v1] https://www.researchsquare.com/article/rs-3736031/v1 (Full text)

Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study

Abstract:

Background: Around 10% of people who had COVID-9 infection suffer from persistent symptoms such as fatigue, dyspnoea, chest pain, arthralgia/myalgia, sleep disturbances, cognitive dysfunction and impairment of mental health. Different underlying pathomechanisms appear to be involved, in particular inflammation, alterations in amino acid metabolism, autonomic dysfunction and gut dysbiosis.

Aim: As routine tests are often inconspicuous in patients with Long COVID (LC), similarly to patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), accessible biomarkers indicating dysregulation of specific pathways are urgently needed to identify underlying pathomechanisms and enable personalized medicine treatment. Within this pilot study we aimed to proof traceability of altered metabolism by urine analysis.

Patients and methods: Urine metabolome analyses were performed to investigate the metabolic signature of patients with LC (n = 25; 20 women, 5 men) in comparison to healthy controls (Ctrl, n = 8; 7 women, 1 man) and individuals with ME/CFS (n = 8; 2 women, 6 men). Concentrations of neurotransmitter precursors tryptophan, phenylalanine and their downstream metabolites, as well as their association with symptoms (fatigue, anxiety and depression) in the patients were examined.

Results and conclusion: Phenylalanine levels were significantly lower in both the LC and ME/CFS patient groups when compared to the Ctrl group. In many LC patients, the concentrations of downstream metabolites of tryptophan and tyrosine, such as serotonin, dopamine and catecholamines, deviated from the reference ranges. Several symptoms (sleep disturbance, pain or autonomic dysfunction) were associated with certain metabolites. Patients experiencing fatigue had lower levels of kynurenine, phenylalanine and a reduced kynurenine to tryptophan ratio (Kyn/Trp). Lower concentrations of gamma-aminobutyric acid (GABA) and higher activity of kynurenine 3-monooxygenase (KMO) were observed in patients with anxiety.

Conclusively, our results suggest that amino acid metabolism and neurotransmitter synthesis is disturbed in patients with LC and ME/CFS. The identified metabolites and their associated dysregulations could serve as potential biomarkers for elucidating underlying pathomechanisms thus enabling personalized treatment strategies for these patient populations.

Source: Taenzer M, Löffler-Ragg J, Schroll A, Monfort-Lanzas P, Engl S, Weiss G, Brigo N, Kurz K. Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study. Int J Tryptophan Res. 2023 Dec 22;16:11786469231220781. doi: 10.1177/11786469231220781. PMID: 38144169; PMCID: PMC10748708. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748708/ (Full text)