Changes in TCA cycle and TCA cycle-related metabolites in plasma upon citric acid administration in rats

Abstract:

Recent studies have reported that plasma levels of tricarboxylic acid (TCA) cycle metabolites and TCA cycle-related metabolite change in patients with chronic fatigue syndrome (CFS) and in healthy humans after exercise. Exogenous dietary citric acid has been reported to alleviate fatigue during daily activities and after exercise. However, it is unknown whether dietary citric acid affects the plasma levels of these metabolites. Therefore, the present study aimed to investigate the effects of exogenously administered citric acid on TCA cycle metabolites and TCA cycle-related metabolites in plasma.

Sprague-Dawley rats were divided into control and citric acid groups. We evaluated the effect of exogenous dietary citric acid on the plasma TCA cycle and TCA cycle-related metabolites by metabolome analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). TCA cycle metabolites, including plasma citrate, cis-aconitate, and isocitrate, were significantly elevated after exogenous administration of citric acid. Anaplerotic amino acids, which are converted to TCA cycle metabolites, such as serine, glycine, tryptophan, lysine, leucine, histidine, glutamine, arginine, isoleucine, methionine, valine, and phenylalanine, also showed significantly elevated levels.

Citric acid administration significantly increased the levels of initial TCA cycle metabolites in the plasma. This increase after administration of citric acid was shown to be opposite to the metabolic changes observed in patients with CFS. These results contribute novel insight into the fatigue alleviation mechanism of citric acid.

Source: Hara Y, Kume S, Kataoka Y, Watanabe N. Changes in TCA cycle and TCA cycle-related metabolites in plasma upon citric acid administration in rats. Heliyon. 2021 Dec 4;7(12):e08501. doi: 10.1016/j.heliyon.2021.e08501. PMID: 34934832; PMCID: PMC8654791. https://pubmed.ncbi.nlm.nih.gov/34934832/

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)

Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, multi-system, debilitating disability manifesting as severe fatigue and post-exertional malaise. The chronic dysfunctions in ME/CFS are increasingly recognized as significant health factors with potential parallels with “long COVID”. However, the etiology of ME/CFS remains elusive with limited high-resolution human studies. In addition, reliable biomarker-based diagnostics have not been well-established, but may assist in disease classification, particularly during different temporal phases of the disease. Here, we performed deep multi-omics (shotgun metagenomics of gut microbiota and plasma metabolomics) and clinical phenotyping of healthy controls (n=79) vs. two cohorts of ME/CFS patients: those with short-term disease (<4 years, n=75), and patients with long-term disease (>10y, n=79).

Overall, ME/CFS was characterized by reduced gut microbiome diversity and richness with high heterogeneity, and depletion of sphingomyelins and short-chain fatty acids in the plasma. We found significant differences when stratifying by cohort; short-term ME/CFS was associated with more microbial dysbiosis, but long-term ME/CFS was associated with markedly more severe phenotypic and metabolic abnormalities. We identified a reduction in the gene-coding capacity (and relative abundance of butyrate producers) of microbial butyrate biosynthesis together with a reduction in the plasma concentration of butyrate, especially in the short-term group. Global co-association and detailed gene pathway correlation analyses linking the microbiome and metabolome identified additional potential biological mechanisms underlying host-microbiome interactions in ME/CFS, including bile acids and benzoate pathways.

Finally, we built multiple state-of-the-art classifiers to identify microbes, microbial gene pathways, metabolites, and clinical features that individually or together, were most able to differentiate short or long-term MECFS, or MECFS vs. healthy controls. Taken together, our study presents the highest resolution, multi-cohort and multi-omics analysis to date, providing an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.

Source: Ruoyun Xiong, Courtney Gunter, Elizabeth Fleming, Suzanne Vernon, Lucinda Bateman, Derya Unutmaz, Julia Oh. Multi-omics of host-microbiome interactions in short- and long-term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). bioRxiv 2021.10.27.466150; doi: https://doi.org/10.1101/2021.10.27.466150 https://www.biorxiv.org/content/10.1101/2021.10.27.466150v1 (Full study available for download)

Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.

Aim: To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.

Methods: A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.

Results: Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.

Conclusion: This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.

Source: Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells. 2021 Aug 26;13(8):1134-1150. doi: 10.4252/wjsc.v13.i8.1134. PMID: 34567431; PMCID: PMC8422931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422931/ (Full article)

Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.

AIM: To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.

METHODS: A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.

RESULTS: Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.

CONCLUSION: This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.

Source: Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells 2021; 13(8): 1134-1150 [DOI: 10.4252/wjsc.v13.i8.1134https://www.wjgnet.com/1948-0210/full/v13/i8/1134.htm (Full study)

A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls.

Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses.

In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.

Source: Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight. 2021 Aug 23;6(16):149217. doi: 10.1172/jci.insight.149217. PMID: 34423789. https://pubmed.ncbi.nlm.nih.gov/34423789/

Insights into Metabolite Diagnostic Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, and with a minimum duration of 6 consecutive months. Its pathogenesis is not fully understood. There are no firmly established diagnostic biomarkers or treatment, due to incomplete understanding of the etiology of ME/CFS and diagnostic uncertainty. Establishing a biomarker for the objective diagnosis is urgently needed to treat a lot of patients. Recently, research on ME/CFS using metabolome analysis methods has been increasing. Here, we overview recent findings concerning the metabolic features in patients with ME/CFS and the animal models which contribute to the development of diagnostic biomarkers for ME/CFS and its treatment. In addition, we discuss future perspectives of studies on ME/CFS.

Source: Yamano E, Watanabe Y, Kataoka Y. Insights into Metabolite Diagnostic Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci. 2021 Mar 26;22(7):3423. doi: 10.3390/ijms22073423. PMID: 33810365. https://pubmed.ncbi.nlm.nih.gov/33810365/

A systematic review of metabolomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease

Abstract:

BACKGROUND: Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID) is a complex illness that has an unknown aetiology. It has been proposed that metabolomics may contribute to the illness pathogenesis of CFS/ME/SEID. In metabolomics, the systematic identification of measurable changes in small molecule metabolite products have been identified in cases of both monogenic and heterogenic diseases. Therefore, the aim of this systematic review was to evaluate if there is any evidence of metabolomics contributing to the pathogenesis of CFS/ME/SEID.

METHODS: PubMed, Scopus, EBSCOHost (Medline) and EMBASE were searched using medical subject headings terms for Chronic Fatigue Syndrome, metabolomics and metabolome to source papers published from 1994 to 2020. Inclusion and exclusion criteria were used to identify studies reporting on metabolites measured in blood and urine samples from CFS/ME/SEID patients compared with healthy controls. The Joanna Briggs Institute Checklist was used to complete a quality assessment for all the studies included in this review.

RESULTS: 11 observational case control studies met the inclusion criteria for this review. The primary outcome of metabolite measurement in blood samples of CFS/ME/SEID patients was reported in ten studies. The secondary outcome of urine metabolites was measured in three of the included studies. No studies were excluded from this review based on a low-quality assessment score, however there was inconsistency in the scientific research design of the included studies. Metabolites associated with the amino acid pathway were the most commonly impaired with significant results in seven out of the 10 studies. However, no specific metabolite was consistently impaired across all of the studies. Urine metabolite results were also inconsistent.

CONCLUSION: The findings of this systematic review reports that a lack of consistency with scientific research design provides little evidence for metabolomics to be clearly defined as a contributing factor to the pathogenesis of CFS/ME/SEID. Further research using the same CFS/ME/SEID diagnostic criteria, metabolite analysis method and control of the confounding factors that influence metabolite levels are required.

Source: Huth TK, Eaton-Fitch N, Staines D, Marshall-Gradisnik S. A systematic review of metabolomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID). J Transl Med. 2020 May 13;18(1):198. doi: 10.1186/s12967-020-02356-2. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02356-2 (Full text)

Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids

Abstract:

The latest worldwide prevalence rate projects that over 65 million patients suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), an illness with known effects on the functioning of the immune and nervous systems. We performed an extensive metabolomics analysis on the plasma of 52 female subjects, equally sampled between controls and ME/CFS patients, which delivered data for about 1750 blood compounds spanning 20 super-pathways, subdivided into 113 sub-pathways.

Statistical analysis combined with pathway enrichment analysis points to a few disrupted metabolic pathways containing many unexplored compounds. The most intriguing finding concerns acyl cholines, belonging to the fatty acid metabolism sub-pathway of lipids, for which all compounds are consistently reduced in two distinct ME/CFS patient cohorts. We compiled the extremely limited knowledge about these compounds and regard them as promising in the quest to explain many of the ME/CFS symptoms.

Another class of lipids with far-reaching activity on virtually all organ systems are steroids; androgenic, progestin, and corticosteroids are broadly reduced in our patient cohort. We also report on lower dipeptides and elevated sphingolipids abundance in patients compared to controls. Disturbances in the metabolism of many of these molecules can be linked to the profound organ system symptoms endured by ME/CFS patients.

Source: Germain A, Barupal DK, Levine SM, Hanson MR. Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. Metabolites. 2020 Jan 14;10(1). pii: E34. doi: 10.3390/metabo10010034. https://www.ncbi.nlm.nih.gov/pubmed/31947545

A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us?

Abstract:

INTRODUCTION: Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition.

OBJECTIVES: Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels.

METHODS: The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox.

RESULTS: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups.

CONCLUSIONS: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.

Source: Erasmus E, Mason S, van Reenen M, Steffens FE, Vorster BC, Reinecke CJ. A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us? Metabolomics. 2019 Nov 27;15(12):158. doi: 10.1007/s11306-019-1620-4. https://www.ncbi.nlm.nih.gov/pubmed/31776682