Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation

Abstract:

Background: Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians.

Methods: In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n=41, matched out of n = 204).

Measurements and main results: PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vmax; 3.42% ± 1.77% vs. 4.64 % ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5 – 190.2] vs. 189.1 [179.4 – 197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8 – 0.9] vs. 0.88 [0.8 – 0.9], p = 0.007). When combining AVR and vmax, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R= -0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters.

Conclusion: Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management.

Source: Timon Kuchler, Roman Günthner, Andrea Ribeiro et al. Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation, 22 May 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2952588/v1 (Full text)

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis

Abstract:

Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects on quality of life and the economy are significant, thus warranting urgent attention to understand the pathophysiology. Herein we describe our perspective that Long COVID is a continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of disease and can cause or exacerbate other pathologies common in Long COVID, such as mast cell activation syndrome and dysautonomia.
Considering the SARS-CoV-2 spike protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, we predict that persistent spike protein will be a key mechanism driving the continued coagulopathy in Long COVID. We discuss several treatment targets to address the coagulopathy, and predict that (particularly early) treatment with combination anticoagulant and antiplatelet drugs will bring significant relief to many patients, supported by a case study. To help focus attention on such treatment targets, we propose Long COVID should be referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require urgent testing, especially as the world tries to co-exist with COVID-19.

Source: Kerr R, Carroll HA. Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis. Research Square; 2023. DOI: 10.21203/rs.3.rs-2939263/v1. https://assets.researchsquare.com/files/rs-2939263/v1_covered_7190a867-1475-4b57-b220-716a953649f1.pdf?c=1684433225 (Full text)

Biological mechanisms underpinning the development of Long COVID

Abstract:

As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-COV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences.

Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available.

To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.

Source: Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of Long COVID. iScience. 2023 May 18:106935. doi: 10.1016/j.isci.2023.106935. Epub ahead of print. PMCID: PMC10193768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193768/ https://www.cell.com/iscience/pdf/S2589-0042(23)01012-X.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS258900422301012X%3Fshowall%3Dtrue (Full text)

From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID

Abstract:

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms.
The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses.
In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Source: Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. International Journal of Molecular Sciences. 2023; 24(9):8290. https://doi.org/10.3390/ijms24098290 https://www.mdpi.com/1422-0067/24/9/8290 (Full text)

Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder

Abstract:

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge.
One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms.
It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Source: Chen T-H, Chang C-J, Hung P-H. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. International Journal of Molecular Sciences. 2023; 24(9):8034. https://doi.org/10.3390/ijms24098034 https://www.mdpi.com/1422-0067/24/9/8034 (Full text)

Viral persistence, reactivation, and mechanisms of long COVID

Abstract:

The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse.

In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.

Source: Chen B, Julg B, Mohandas S, Bradfute SB; RECOVER Mechanistic Pathways Task Force. Viral persistence, reactivation, and mechanisms of long COVID. Elife. 2023 May 4;12:e86015. doi: 10.7554/eLife.86015. PMID: 37140960; PMCID: PMC10159620. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159620/ (Full text)

Long COVID: a review and proposed visualization of the complexity of long COVID

Abstract:

Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus – 2 (SARS-CoV-2) infection, or Long COVID, is a prevailing second pandemic with nearly 100 million affected individuals globally and counting. We propose a visual description of the complexity of Long COVID and its pathogenesis that can be used by researchers, clinicians, and public health officials to guide the global effort toward an improved understanding of Long COVID and the eventual mechanism-based provision of care to afflicted patients. The proposed visualization or framework for Long COVID should be an evidence-based, dynamic, modular, and systems-level approach to the condition.

Furthermore, with further research such a framework could establish the strength of the relationships between pre-existing conditions (or risk factors), biological mechanisms, and resulting clinical phenotypes and outcomes of Long COVID. Notwithstanding the significant contribution that disparities in access to care and social determinants of health have on outcomes and disease course of long COVID, our model focuses primarily on biological mechanisms. Accordingly, the proposed visualization sets out to guide scientific, clinical, and public health efforts to better understand and abrogate the health burden imposed by long COVID.

Source: Perumal R, Shunmugam L, Naidoo K, Abdool Karim SS, Wilkins D, Garzino-Demo A, Brechot C, Parthasarathy S, Vahlne A, Nikolich JŽ. Long COVID: a review and proposed visualization of the complexity of long COVID. Front Immunol. 2023 Apr 20;14:1117464. doi: 10.3389/fimmu.2023.1117464. PMID: 37153597; PMCID: PMC10157068. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157068/ (Full text)

Long COVID: pathophysiological factors and abnormalities of coagulation

Abstract:

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction).

These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.

Source: Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023 Jun;34(6):321-344. doi: 10.1016/j.tem.2023.03.002. Epub 2023 Apr 19. PMID: 37080828; PMCID: PMC10113134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113134/ (Full text)

Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae?

Abstract:

Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogenous symptoms across multiple organs systems. Here, we discuss the current evidence linking thrombo-inflammation to Post-acute sequelae of COVID-19 (PASC).

Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with increased thrombin generation capacity, and abnormalities in platelet counts in PASC. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and NETosis. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-Dimer in the circulation, as well as perfusion abnormalities in the lung and brain of Long COVID patients. Also, COVID-19 survivors suffer from an increased rate of arterial and venous thrombotic events.

We discuss three important, potentially intertwined hypotheses, that might contribute to thromboinflammation in Long COVID: Lasting structural changes, most prominently endothelial damage, caused during initial infection, a persistent viral reservoir, and immunopathology driven by a misguided immune system.

Lastly, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to Long COVID.

Source: Nicolai L, Kaiser R, Stark K. Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae? J Thromb Haemost. 2023 May 11:S1538-7836(23)00400-2. doi: 10.1016/j.jtha.2023.04.039. Epub ahead of print. PMID: 37178769; PMCID: PMC10174338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174338/ (Full text)

Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response

Abstract:

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis.

Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor β7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease.  Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC.

In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+β7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.

Source: Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, Mendes M, Oliveira B, Braga M, Lopes JR, Domingues R, Costa R, Silva LN, Matos AR, Ângela C, Costa P, Carvalho A, Capela C, Pedrosa J, Castro AG, Estaquier J, Silvestre R. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat Commun. 2023 Mar 30;14(1):1772. doi: 10.1038/s41467-023-37368-1. PMID: 36997530; PMCID: PMC10061413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061413/ (Full text)