Pharmacological Mechanism of NRICM101 for COVID-19 Treatments by Combined Network Pharmacology and Pharmacodynamics

Abstract:

Symptom treatments for Coronavirus disease 2019 (COVID-19) infection and Long COVID are one of the most critical issues of the pandemic era. In light of the lack of standardized medications for treating COVID-19 symptoms, traditional Chinese medicine (TCM) has emerged as a potentially viable strategy based on numerous studies and clinical manifestations. Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear. The molecular mechanism of NRICM101 was systematically analyzed by using exploratory bioinformatics and pharmacodynamics (PD) approaches.

Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. For the network pharmacology of the NRICM101, the 434 common interacting genes/proteins had the highest associations with the interleukin (IL)-17 signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Moreover, the tumor necrosis factor (TNF) was found to have the highest association with the 30 most frequently curated NRICM101 chemicals.

Disease analyses also revealed that the most relevant diseases with COVID-19 infections were pathology, followed by cancer, digestive system disease, and cardiovascular disease. The 30 most frequently curated human genes and 2 microRNAs identified in this study could also be used as molecular biomarkers or therapeutic options for COVID-19 treatments.

In addition, dose-response profiles of NRICM101 doses and IL-6 or TNF-α expressions in cell cultures of murine alveolar macrophages were constructed to provide pharmacodynamic (PD) information of NRICM101. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future.

Source: Singh S, Yang YF. Pharmacological Mechanism of NRICM101 for COVID-19 Treatments by Combined Network Pharmacology and Pharmacodynamics. Int J Mol Sci. 2022 Dec 6;23(23):15385. doi: 10.3390/ijms232315385. PMID: 36499711; PMCID: PMC9740625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740625/ (Full text)

Effect of Vaccination against SARS-CoV-2 on Long COVID-19: A Narrative Review

Abstract:

Vaccines against SARS-CoV-2 have saved millions of lives and played an important role in containing the COVID-19 pandemic. Vaccination against SARS-CoV-2 is also associated with reduced disease severity and, perhaps, with COVID-19 symptom burden.

In this narrative review, we present, in a clinically relevant question-and-answer manner, the evidence regarding the association between vaccination against SARS-CoV-2 and long COVID-19. We discuss how the mechanism of action of vaccines could interplay with the pathophysiology of post-COVID-19 condition.

Furthermore, we describe how specific factors, such as the number of vaccine doses and the type of SARS-CoV-2 variants, may affect post-COVID-19 condition. We also discuss the role of timing for vaccination in relation to the onset of long COVID-19 symptoms, as it seems to affect the frequency and severity of the condition.

Additionally, we describe the potential modifying effect of age, as well as the association of type and level of immune response with long COVID-19. We also describe how system-specific long COVID-19 sequelae, namely neurocognitive-psychologic symptoms and cardiovascular pathology, could be altered by vaccination.

Last, we address the question of whether seasonal influenza vaccination has a meaningful impact on the frequency of long COVID-19.

Source: Tofarides AG, Christaki E, Milionis H, Nikolopoulos GK. Effect of Vaccination against SARS-CoV-2 on Long COVID-19: A Narrative Review. Life (Basel). 2022 Dec 8;12(12):2057. doi: 10.3390/life12122057. PMID: 36556422. https://www.mdpi.com/2075-1729/12/12/2057 (Full text)

Pathophysiological mechanisms of thrombosis in acute and long COVID-19

Abstract:

COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood.

In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation.

Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease.

We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.

Source: Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol. 2022 Nov 16;13:992384. doi: 10.3389/fimmu.2022.992384. PMID: 36466841; PMCID: PMC9709252. https://www.frontiersin.org/articles/10.3389/fimmu.2022.992384/full (Full text)

A multi-omics based anti-inflammatory immune signature characterizes Long COVID Syndrome

Abstract:

To investigate Long COVID Syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as Long COVID Syndrome (LCS) patients.

Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to LCS patients. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS. High levels of anti-inflammatory oxylipins including omega-3 fatty acids in LCS were detected by eicosadomics, whereas targeted metabolic profiling indicated high levels of anti-inflammatory osmolytes taurine and hypaphorine, but low amino acid and triglyceride levels and deregulated acylcarnithines. A model considering alternatively polarized macrophages as a major contributor for these molecular alterations is presented.

Source: Kovarik JJ, Bileck A, Hagn G, Meier-Menches SM, Frey T, Kaempf A, Hollenstein M, Shoumariyeh T, Skos L, Reiter B, Gerner MC, Spannbauer A, Hasimbegovic E, Schmidl D, Garhöfer G, Gyöngyösi M, Schmetterer KG, Gerner C. A multi-omics based anti-inflammatory immune signature characterizes Long COVID Syndrome. iScience. 2022 Dec 5:105717. doi: 10.1016/j.isci.2022.105717. Epub ahead of print. PMID: 36507225; PMCID: PMC9719844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719844/ (Full text)

Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study

Abstract:

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes.

The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.

Source: Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, Sanabria-Diaz G, Müller J, Chiappini A, Rychen J, Eberhard N, Guzman R, Mariani L, Melie-Garcia L, Keller E, Jelcic I, Pargger H, Siegemund M, Kuhle J, Oechtering J, Eich C, Tzankov A, Matter MS, Uzun S, Yaldizli Ö, Lieb JM, Psychogios MN, Leuzinger K, Hirsch HH, Granziera C, Pröbstel AK, Hutter G. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat Commun. 2022 Nov 9;13(1):6777. doi: 10.1038/s41467-022-34068-0. PMID: 36351919; PMCID: PMC9645766.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645766/ (Full text)

Clinical and laboratory predictors of long-COVID in children: a single center retrospective study

Abstract:

Objective: The majority of children experience a mild course of acute Coronavirus Disease 2019 (COVID-19). Only few studies have looked at long-term recovery from COVID-19 infection in children. The purpose of this study was to identify the predictors of long-COVID by performing a thorough analysis of the clinical, laboratory, and demographic characteristics of children with COVID-19.

Patients and methods: Between August and October 2021, data were obtained retrospectively from the medical records of 251 children diagnosed with COVID-19 at a tertiary single-center hospital. The prognostic effects of admission-related factors were compared between patients who experienced long-lasting symptoms and those who did not.

Results: Long-COVID symptoms were noted in 12.4% of patients. Joint pain (7.6%), lumbago (4.8%), and headache (3.2%) were the most common symptoms. The mean onset of long-COVID symptoms was 1.35±0.49 months. The onset of long-COVID symptoms was 4 weeks after initial diagnosis in 64.5% of patients and 4-8 weeks later in 35.5% of the patients. The mean duration of long-COVID symptoms was 5.32±2.51 months. Children with long-COVID had higher leukocytes, neutrophils, monocytes, basophils, platelets, and D-dimer when compared with patients without long-COVID (p < 0.001). Leukocytes, neutrophils, monocytes, platelets, and D-dimer had the highest AUC in the ROC analysis (0.694, 0.658, 0.681, 0.667, and 0.612, respectively) and were statistically significant.

Conclusions: Despite the majority of children with COVID-19 having mild or asymptomatic acute disease, the majority of long-COVID symptoms were associated with functional impairment between 1 and 9 months after the start of the infection. Increased leukocytes, monocytes, neutrophils, platelets, and D-dimer appear to be the most powerful laboratory predictors for long-COVID and monitoring these predictors may assist clinicians to identify and follow-up patients with higher risk for long-COVID.

Source: Güven D, Buluş AD. Clinical and laboratory predictors of long-COVID in children: a single center retrospective study. Eur Rev Med Pharmacol Sci. 2022 Oct;26(20):7695-7704. doi: 10.26355/eurrev_202210_30046. PMID: 36314341.  https://www.europeanreview.org/article/30046 (Full text)

Beyond COVID-19 and SARS-CoV-2, cardiovascular outcomes of “long covid” from a pathological perspective – a look back and road ahead

Abstract:

With the decrease in severity of COVID-19 there is a sense of relief in the general population. However, there has been an increased incidence of cardiovascular and other organ complications post-infection, which have raised concerns about long COVID. The term “long COVID” was first used by Perego on social media to denote the persistence of symptoms weeks or months after initial SARS-CoV-2 infection and the term ‘long haulers’ was first described by Watson and by Yong to identify post-COVID conditions.

There has been an increased incidence of sudden cardiac death and MI post-COVID-19 in healthy individuals, sports persons and prominent movie stars. Potential mechanisms contributing to the pathophysiology of post-acute COVID-19 may include 1) Damage to tissues and cells that are important for blood flow, so clotting of blood is increased. 2) Persistence of fragments of virus or its sub-particles/ protein material in a wide range of body sites and, 3) an immune system gone haywire.

As the majority of countries across the globe are easing coronavirus precautionary measures, there is an urgent need by health care organizations and policymakers worldwide to generate awareness by educating the public at large, about the ill effects of long-COVID and varied types of post-acute sequelae of COVID-19.

Source: Aden D, Zaheer S, Kumar R, Raj S, Khan T, Varshney S. Beyond COVID-19 and SARS-CoV-2, cardiovascular outcomes of “long covid” from a pathological perspective – a look back and road ahead. Pathol Res Pract. 2022 Sep 29;239:154144. doi: 10.1016/j.prp.2022.154144. Epub ahead of print. PMID: 36242969; PMCID: PMC9519512.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519512/ (Full text)

Persistence of Neutrophil extracellular traps and anti-cardiolipin auto-antibodies in post-acute phase COVID-19 patients

Abstract:

This exploratory prospective study based on 279 individuals showed that plasma levels of neutrophil elastase, myeloperoxidase and circulating DNA of nuclear and mitochondrial origins in non-severe (NS), severe (S) and post-acute phase (PAP) COVID-19 patients were statistically different as compared to the levels in healthy individuals, and revealed the high diagnostic power of these markers in respect to the disease severity. The diagnostic power of NE, MPO, and cir-nDNA as determined by the Area Under Receiver Operating Curves (AUROC) was 0.95, 097 and 0.64; 0.99, 1.0 and 0.82; and 0.94, 1.0, and 0.93, in NS, S and PAP patient subgroups, respectively. In addition, a significant fraction of NS, S as well as of PAP patients exhibited aCL IgM/IgG and anti-B2GP IgM/IgG positivity.

We first demonstrate persistence of these NETs (Neutrophil extracellular traps) markers in PAP patients and consequently of sustained innate immune response imbalance, and a prolonged low-level pro-thrombotic potential activity highlighting the need to monitor these markers in all COVID-19 PAP individuals, to investigate post-acute COVID-19 pathogenesis following intensive care, and to better identify which medical resources will ensure complete patient recovery.

Source: Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavstev A, Berger M, Roubille C, Fesler P, Klouche K, Cristol JP, Thierry AR. Persistence of Neutrophil extracellular traps and anti-cardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2022 Oct 13. doi: 10.1002/jmv.28209. Epub ahead of print. PMID: 36226380. https://pubmed.ncbi.nlm.nih.gov/36226380/

Kynurenine serves as useful biomarker in acute, Long- and Post-COVID-19 diagnostics

Abstract:

Introduction: In patients with SARS-CoV-2, innate immunity is playing a central role, depicted by hyperinflammation and longer lasting inflammatory response. Reliable inflammatory markers that cover both acute and long-lasting COVID-19 monitoring are still lacking. Thus, we investigated one specific inflammatory marker involved as one key player of the immune system, kynurenine (Kyn), and its use for diagnosis/detection of the Long-/Post-COVID syndrome in comparison to currently used markers in both serum and saliva samples.

Material and methods: The study compromised in total 151 inpatients with a SARS-CoV-2 infection hospitalized between 03/2020 and 09/2021. The group NC (normal controls) included blood bank donors (n=302, 144f/158m, mean age 47.1 ± 18.3 years (range 18-75)). Two further groups were generated based on Group A (n=85, 27f/58m, mean age 63.1 ± 18.3 years (range 19-90), acute admission to the hospital) and Group B (n=66, 22f/44m, mean age 66.6 ± 17.6 years (range 17-90), admitted either for weaning or for rehabilitation period due to Long-COVID symptoms/syndrome). Plasma concentrations of Kyn, C-Reactive Protein (CRP) and interleukin-6 (IL-6) were measured on admission. In Group B we determined Kyn 4 weeks after the negative PCR-test. In a subset of patients (n=11) concentrations of Kyn and CRP were measured in sera and saliva two, three and four months after dismission. We identified 12 patients with Post-COVID symptoms >20 weeks with still significant elevated Kyn-levels.

Results: Mean values for NC used as reference were 2.79 ± 0.61 µM, range 1.2-4.1 µM. On admission, patients showed significantly higher concentrations of Kyn compared to NC (p-values < 0.001). Kyn significantly correlated with IL-6 peak-values (r=0.411; p-values <0.001) and CRP (r=0.488, p-values<0.001). Kyn values in Group B (Long-/Post-COVID) showed still significant higher values (8.77 ± 1.72 µM, range 5.5-16.6 µM), whereas CRP values in Group B were in the normal range.

Conclusion: Serum and saliva Kyn are reflecting the acute and long-term pathophysiology of the SARS-CoV-2 disease concerning the innate immune response and thus may serve a useful biomarker for diagnosis and monitoring both Long- and Post-COVID syndrome and its therapy.

Source: Bizjak DA, Stangl M, Börner N, Bösch F, Durner J, Drunin G, Buhl JL, Abendroth D. Kynurenine serves as useful biomarker in acute, Long- and Post-COVID-19 diagnostics. Front Immunol. 2022 Sep 23;13:1004545. doi: 10.3389/fimmu.2022.1004545. PMID: 36211365; PMCID: PMC9537769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537769/ (Full text)

Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood.

We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ESCP, Martins TB, Hill HR, Coiras M, Shah KS, Planelles V, Spivak AM. Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID. medRxiv [Preprint]. 2022 Oct 5:2022.10.03.22280661. doi: 10.1101/2022.10.03.22280661. PMID: 36238724; PMCID: PMC9558442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558442/ (Full text)