BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome

Abstract:

Chronic diseases like ME/CFS and long COVID exhibit high heterogeneity with multifactorial etiology and progression, complicating diagnosis and treatment. To address this, we developed BioMapAI, an explainable Deep Learning framework using the richest longitudinal multi-‘omics dataset for ME/CFS to date.

This dataset includes gut metagenomics, plasma metabolome, immune profiling, blood labs, and clinical symptoms. By connecting multi-‘omics to asymptom matrix, BioMapAI identified both disease- and symptom-specific biomarkers, reconstructed symptoms, and achieved state-of-the-art precision in disease classification. We also created the first connectivity map of these ‘omics in both healthy and disease states and revealed how microbiome-immune-metabolome crosstalk shifted from healthy to ME/CFS.

Thus, we proposed several innovative mechanistic hypotheses for ME/CFS: Disrupted microbial functions – SCFA (butyrate), BCAA (amino acid), tryptophan, benzoate – lost connection with plasma lipids and bile acids, and activated inflammatory and mucosal immune cells (MAIT, γδT cells) with INFγ and GzA secretion. These abnormal dynamics are linked to key disease symptoms, including gastrointestinal issues, fatigue, and sleep problems.

Source: Xiong R, Fleming E, Caldwell R, Vernon SD, Kozhaya L, Gunter C, Bateman L, Unutmaz D, Oh J. BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. bioRxiv [Preprint]. 2024 Jun 28:2024.06.24.600378. doi: 10.1101/2024.06.24.600378. PMID: 38979186; PMCID: PMC11230215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230215/ (Full text available as PDF file)

Impact of inflammatory response in the acute phase of COVID-19 on predicting objective and subjective post-COVID fatigue

Abstract:

The biological predictors of objective and subjective fatigue in individuals with post-COVID syndrome remains unclear. This study aims to ascertain the predictive significance of the immune response measured during the acute phase of SARS-CoV-2 infection on various dimensions of fatigue 6–9 months post-infection.

We examined the association between immune markers obtained from the serum of 54 patients (mean age: 58.69 ± 10.90; female: 31%) and objective and subjective chronic fatigue using general linear mixed models. Level of IL-1RA, IFNγ and TNFα in plasma and the percentage of monocytes measured in the acute phase of COVID-19 predicted physical and total fatigue.

Moreover, the higher the concentration of TNFα (r=-0.40 ; p = .019) in the acute phase, the greater the lack of awareness of cognitive fatigue 6–9 months post-infection. These findings shed light on the relationship between acute inflammatory response and the persistence of both objective and subjective fatigue.

Source: Julie Péron, Anthony Nuber-Champier, Gautier Breville et al. Impact of inflammatory response in the acute phase of COVID-19 on predicting objective and subjective post-COVID fatigue, 28 May 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-4374986/v1] https://www.researchsquare.com/article/rs-4374986/v1 (Full text)

Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid

Abstract:

After acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a proportion of patients experience persistent symptoms beyond 12 weeks, termed Long Covid. Understanding the mechanisms that cause this debilitating disease and identifying biomarkers for diagnostic, therapeutic, and monitoring purposes are urgently required.

We detected persistently high levels of interferon-γ (IFN-γ) from peripheral blood mononuclear cells of patients with Long Covid using highly sensitive FluoroSpot assays. This IFN-γ release was seen in the absence of ex vivo peptide stimulation and remains persistently elevated in patients with Long Covid, unlike the resolution seen in patients recovering from acute SARS-CoV-2 infection. The IFN-γ release was CD8+ T cell-mediated and dependent on antigen presentation by CD14+ cells.

Longitudinal follow-up of our study cohort showed that symptom improvement and resolution correlated with a decrease in IFN-γ production to baseline levels. Our study highlights a potential mechanism underlying Long Covid, enabling the search for biomarkers and therapeutics in patients with Long Covid.

Source: Krishna BA, Lim EY, Metaxaki M, Jackson S, Mactavous L; NIHR BioResource; Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Sithole N, Wills MR. Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid. Sci Adv. 2024 Feb 23;10(8):eadi9379. doi: 10.1126/sciadv.adi9379. Epub 2024 Feb 21. PMID: 38381822; PMCID: PMC10881041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881041/ (Full text)

Long COVID Diagnostic with Differentiation from Chronic Lyme Disease using Machine Learning and Cytokine Hubs

Abstract:

The absence of a diagnostic for long COVID (LC) or post-acute sequelae of COVID-19 (PASC) has profound implications for research and potential therapeutics. Further, symptom-based identification of patients with long-term COVID-19 lacks the specificity to serve as a diagnostic because of the overlap of symptoms with other chronic inflammatory conditions like chronic Lymedisease (CLD), myalgic encephalomyelitis-chronic fatigue syndrome (ME-CFS), and others. Here, we report a machine-learning approach to long COVID diagnosis using cytokine hubs that are also capable of differentiating long COVID from chronic Lyme.

We constructed three tree-based classifiers: decision tree, random forest, and gradient-boosting machine (GBM) and compared their diagnostic capabilities. A 223 patient dataset was partitioned into training (178 patients) and evaluation (45 patients) sets. The GBM model was selected based on performance (89% Sensitivity and 96% Specificity for LC) with no evidence of overfitting.

We tested the GBM on a random dataset of 124 individuals (106 PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity 90% for LC). A Lyme Index composed of two features ((TNF-alpha +IL-4)/(IFN-gamma + IL-2) and (TNF-alpha *IL-4)/(IFN-gamma + IL-2 + CCL3) was constructed as a confirmatory algorithm to discriminate between LC and CLD.

Source: Bruce Patterson, Jose Guevara-Coto, Javier Mora et al. Long COVID Diagnostic with Differentiation from Chronic Lyme Disease using Machine Learning and Cytokine Hubs, 18 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3873244/v1] https://www.researchsquare.com/article/rs-3873244/v1 (Full text)

Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series

Highlights:

• Both Long COVID and ME/CFS are characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα.

• In a small Long COVID and ME/CFS case series, patients’ immune deficiency and health improve during treatment period with a nebulized antioxidant, anti-pathogen and immune-modulatory pharmacological agent.

• This work provides evidence of a useful biomarker, CD8 T-cell dysfunction reminiscent of T cell exhaustion, that may assist diagnosis and have utility for tracking disease outcome during therapy, including response to a potential new treatment.

Abstract:

Background: Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system.

Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3–15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients.

Conclusions: Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.

Source: Gil, A., Hoag, G.E., Salerno, J.P., Hornig, M., Klimas, N., Selin, L.K. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/antipathogen agent in a retrospective case series. Brain, Behavior, & Immunity – Health (2024), doi: https://doi.org/10.1016/j.bbih.2023.100720 https://www.sciencedirect.com/science/article/pii/S2666354623001345 (Full text)

SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence.

Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation.

However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition.

Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.

Source: Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol. 2023 Nov 2. doi: 10.1038/s41590-023-01661-4. Epub ahead of print. PMID: 37919524. https://www.nature.com/articles/s41590-023-01661-4 (Full text)

Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments

Abstract:

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling.

Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36).

Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1β responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1β-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals.

Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.

Source: Raju Paul S, Scholzen A, Reeves PM, Shepard R, Hess JM, Dzeng RK, Korek S, Garritsen A, Poznansky MC, Sluder AE. Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments. Front Immunol. 2023 Oct 11;14:1249581. doi: 10.3389/fimmu.2023.1249581. PMID: 37885896; PMCID: PMC10598782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598782/ (Full text)

Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae post COVID-19

Abstract:

Post-acute sequelae of SARS-CoV-2 infection (PASC) represents an urgent public health challenge, with its impact resonating in over 60 million individuals globally. While a growing body of evidence suggests that dysregulated immune reactions may be linked with PASC symptoms, most investigations have primarily centered around blood studies, with few focusing on samples derived from post-COVID affected tissues. Further, clinical studies alone often provide correlative insights rather than causal relationships. Thus, it is essential to compare clinical samples with relevant animal models and conduct functional experiments to truly understand the etiology of PASC.

In this study, we have made comprehensive comparisons between bronchoalveolar lavage fluid (BAL) single-cell RNA sequencing (scRNAseq) data derived from clinical PASC samples and relevant PASC mouse models. This revealed a strong pro-fibrotic monocyte-derived macrophage response in respiratory PASC (R-PASC) in both humans and mice, and abnormal interactions between pulmonary macrophages and respiratory resident T cells.

IFN-g emerged as a key node mediating the immune anomalies in R-PASC. Strikingly, neutralizing IFN-g post the resolution of acute infection reduced lung inflammation, tissue fibrosis, and improved pulmonary gas-exchange function in two mouse models of R-PASC. Our study underscores the importance of performing comparative analysis to understand the root cause of PASC for developing effective therapies.

Source: Jie SunChaofan LiWei QianXiaoqin Wei. Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae post COVID-19.

Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae post COVID-19

Abstract:

The long-term health effects of SARS-CoV-2, termed Post-Acute Sequelae of COVID-19 (PASC), are quickly evolving into a major public health concern, but the underlying cellular and molecular etiology remain poorly defined. There is growing evidence that PASC is linked to abnormal immune responses and/or poor organ recovery post-infection. However, the exact processes linking non-resolving inflammation, impaired tissue repair, and PASC are still unclear.

In this report, we utilized a cohort of respiratory PASC patients with viral infection-mediated pulmonary fibrosis and a clinically relevant mouse model of post-viral lung sequelae to investigate the pathophysiology of respiratory PASC. Using a combination of imaging and spatial transcriptomics, we identified dysregulated proximal interactions between immune cells and epithelial progenitors unique to respiratory PASC but not acute COVID-19 or idiopathic pulmonary fibrosis (IPF). Specifically, we found a central role for lung-resident CD8+ T cell-macrophage interactions in maintaining Krt8hi transitional and ectopic Krt5+ basal cell progenitors, and the development of fibrotic sequelae after acute viral pneumonia.

Mechanistically, CD8+ T cell derived IFN-γ and TNF stimulated lung macrophages to chronically release IL-1β, resulting in the abnormal accumulation of dysplastic epithelial progenitors in fibrotic areas. Notably, therapeutic neutralization of IFN-γ and TNF, or IL-1β after the resolution of acute infection resulted in markedly improved alveolar regeneration and restoration of pulmonary function.

Together, our findings implicate a dysregulated immune-epithelial progenitor niche in driving respiratory PASC and identify potential therapeutic targets to dampen chronic pulmonary sequelae post respiratory viral infections including SARS-CoV-2.

Source: Narasimhan H, Cheon IS, Qian W, Hu S, Parimon T, Li C, Goplen N, Wu Y, Wei X, Son YM, Fink E, Santos G, Tang J, Yao C, Muehling L, Canderan G, Kadl A, Cannon A, Pramoonjago P, Shim YM, Woodfolk J, Zang C, Chen P, Sun J. Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae post COVID-19. bioRxiv [Preprint]. 2023 Sep 14:2023.09.13.557622. doi: 10.1101/2023.09.13.557622. PMID: 37745354; PMCID: PMC10515929. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515929/ (Full text)

Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC)

Abstract:

Background: A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce.

Methods: In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests and physical examination were obtained from all patients. SARSCoV-2 reactive T cell response was analyzed via multiparametric flowcytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay.

Results: The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells.

Conclusions: Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.

Source: Krystallenia Paniskaki, et al. Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC) https://d197for5662m48.cloudfront.net/documents/publicationstatus/144335/preprint_pdf/a855de5e766f9457795050e56413075a.pdf (Full text)